
 

Unpublished manuscript | 1 

A clinically relevant morpho-molecular 
classification of lung neuroendocrine tumours 
 
Alexandra Sexton-Oates#,1, Émilie Mathian#,1, Noah Candeli2, Yuliya Lim1, Catherine Voegele1, Alex Di Genova3-5, 
Laurane Mangé1, Zhaozhi Li6, Tijmen van Weert7, Lisa M. Hillen7, Ricardo Blázquez-Encinas8-10, Abel Gonzalez-
Perez11,12,13, Maike L. Morrison14, Eleonora Lauricella15, Lise Mangiante1,16, Lisa Bonheme1, Laura Moonen7, 
Gudrun Absenger17, Janine Altmuller18,19, Cyril Degletagne20, Odd Terje Brustugun21-23, Vincent Cahais24, Giovanni 
Centonze25, Amélie Chabrier1, Cyrille Cuenin24, Francesca Damiola26, Vincent Thomas de Montpréville27, Jean-
François Deleuze28, Anne-Marie C. Dingemans29, Élie Fadel27,30, Nicolas Gadot26, Akram Ghantous24, Paolo 
Graziano31,32, Paul Hofman33, Véronique Hofman33, Alejandro Ibáñez-Costa8-10, Stéphanie Lacomme34, Nuria 
Lopez-Bigas11-13,35, Marius Lund-Iversen36, Massimo Milione25, Lucia Anna Muscarella37, Sergio Pedraza-Arevalo8-

10, Corinne Perrin38, Gaetane Planchard39, Helmut Popper40, Luca Roz41, Angelo Sparaneo37, Wieneke 
Buikhuisen42, José van den Berg43, Margot Tesselaar44, Jaehee Kim6, Ernst Jan M Speel45, Séverine Tabone-
Eglinger46, Thomas Walter47,48, Gavin M. Wright49,50, Justo P. Castaño8-10,51, Lara Chalabreysse52, Liming Chen53, 
Christophe Caux54, Marco Volante55, Nicolas Girard56-58, Jean-Michel Vignaud59, Esther Conde60,61, Audrey 
Mansuet-Lupo62, Luka Brcic63,64, Giuseppe Pelosi65, Mauro Giulio Papotti66, Sylvie Lantuejoul67,68, Jules Derks29, 
Talya Dayton2, Nicolas Alcala#,*,1, Matthieu Foll*,1 & Lynnette Fernandez-Cuesta*,1 
 
*correspondence to : fernandezcuestal@iarc.who.int, follm@iarc.who.int, and alcalan@iarc.who.int;  
# These authors contributed equally 
 
1 Computational Cancer Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, 
France 
2 European Molecular Biology Laboratory, Barcelona, Spain 
3 Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile 
4 Centro UOH de Bioingenieria (CUBI),Universidad de O'Higgins, Rancagua, Chile 
5 Centro de Modelamiento Matemático UMI-CNRS 2807, Santiago, Chile 
6 Department of Computational Biology, Cornell University, New York, USA 
7 Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, 
The Netherlands 
8 Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain 
9 Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain 
10 Reina Sofia University Hospital, Cordoba, Spain 
11 Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain 
12 Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain 
13 Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain 
14 Department of Biology, Stanford University, Stanford, CA, USA 
15 Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Bari, Italy 
16 Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA 
17 Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria 
18 Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany 
19 Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany 
20 Cancer Genomic Platform, Centre de Recherche en Cancérologie de Lyon (CRCL) INSERM U1052-CNRS UMR5286, Université de Lyon, 
Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France 
21 Institute of Clinical Medicine, University of Oslo, Oslo, Norway 
22 Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway 
23 Institute for Cancer Research, Oslo University Hospital, Oslo, Norway 
24 Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France 
25 First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy 
26 Pathology Research Platform, Cancer Research Center of Lyon, INSERM 1052, CNRS 5286, Lyon 1 University & Department of 
Biopathology, CNR MESOPATH NETMESO, Centre Léon Bérard, Lyon, France 
27 Department of Pathology, Hôpital Marie-Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis Robinson, France 
28 Centre National de Recherche en Génomique Humaine (CNRGH), CEA-Institut de Biologie François Jacob, Université Paris-Saclay, Evry, 
France 
29 Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands. 
30 Paris Saclay University, Gif-sur-Yvette, France 
31 Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy 
32 Unit of Pathology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy  
33 IHU RespirERA, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Côte d’Azur University, Nice, Fance 
34 Center of Biological Resources BB-0033-00035, University Hospital of Nancy, Vandœuvre‑lès‑Nancy, France 
35 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain 
36 Department of pathology, Oslo University Hospital, Oslo, Norway 
37 Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy 
38 Hospices Civils de Lyon Biobank (CRB HCL), Tissu-Tumorothèque Est, Lyon, France 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2025. ; https://doi.org/10.1101/2025.07.18.25331556doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:fernandezcuestal@iarc.who.int
mailto:follm@iarc.who.int
mailto:alcalan@iarc.who.int
https://doi.org/10.1101/2025.07.18.25331556
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 

2 | Unpublished manuscript 

39 Pathology Department, Caen University Hospital, Normandy University, Caen, France 
40 Pathology Institute for Diagnostics and Research, Medical University Graz, Graz, Austria 
41 Department of Experimental Oncology, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy 
42 Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands 
43 Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands 
44 Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands 
45 Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands 
46 Plateforme de Gestion des Echantillons Biologique, Centre Léon Bérard, Cancer Research Center of Lyon, Université de Lyon, Université 
Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France 
47 Gastroenterology and Technologies for Health, INSERM UMR 1052 CNRS UMR 5286, Cancer Research Center of Lyon, University of Lyon, 
Lyon, France 
48 Department of Medical Oncology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France 
49 University of Melbourne, Melbourne, Australia 
50 Department of Surgery, St Vincent's Hospital, Melbourne, Australia 
51 CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain 
52 Department of Pathology, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France 
53 Department of Mathematics and Informatics, Ecole Centrale de Lyon, Lyon, France; Institut Universitaire de France (IUF), Paris, France 
54 CISTAR team, Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, 8 Université Lyon 1, Centre Léon 
Bérard, Lyon, France 
55 Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy 
56 Institut Curie, Paris, France 
57 Université de Versailles Saint-Quentin-en-Yvelines, Paris Saclay, Versailles, France 
58 EURACAN, Lyon, France 
59 Department of Biopathologie, Nancy University Hospital, Nancy, France 
60 Department of Pathology, Hospital Universitario 12 de Octubre. Universidad Complutense de Madrid, Madrid, Spain 
61 Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), CIBERONC, Madrid, Spain 
62 Department of Pathology, Cochin Hospital, APHP Paris Centre, Paris City University, Paris, France 
63 Department of Pathology, Hospital Graz II, Graz, Austria 
64 Department of Pathology, Medical University of Vienna, Vienna, Austria 
65 Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy 
66 Department of Oncology, University of Turin, Turin, Italy 
67 Grenoble Alpes University, Grenoble, France 
68 Department of Biopathology, Léon Bérard Cancer Center, Lyon, France 

 

Abstract 

Lung neuroendocrine tumours (NETs, also known as carcinoids) are rapidly rising in incidence worldwide but 
have unknown aetiology and limited therapeutic options beyond surgery. We conducted multi‐omic analyses on 
over 300 lung NETs including whole‐genome sequencing (WGS), transcriptome profiling, methylation arrays, 
spatial RNA sequencing, and spatial proteomics. The integration of multi-omic data provides definitive proof of 
the existence of four strikingly different molecular groups that vary in patient characteristics, genomic and 
transcriptomic profiles, microenvironment, and morphology, as much as distinct diseases. Among these, we 
identify a new molecular group, enriched for highly aggressive supra‐carcinoids, that displays an immune‐rich 
microenvironment linked to tumour—macrophage crosstalk, and we uncover an undifferentiated cell 
population within supra-carcinoids, explaining their molecular and behavioural link to high-grade lung 
neuroendocrine carcinomas. Deep learning models accurately identified the Ca A1, Ca A2, and Ca B groups based 
on morphology alone, outperforming current histological criteria. The characteristic tumour microenvironment 
of supra-carcinoids and the validation of a panel of immunohistochemistry markers for the other three molecular 
groups demonstrates that these groups can be accurately identified based solely on morphological features, 
facilitating their implementation in the clinical setting. Our proposed morpho-molecular classification highlights 
group-specific therapeutic opportunities, including DLL3, FGFR, TERT, and BRAF inhibitors. Overall, our findings 
unify previously proposed molecular classifications and refine the lung cancer map by revealing novel tumour 
types and potential treatments, with significant implications for prognosis and treatment decision‐making.  
 

Introduction

Neuroendocrine neoplasms (NENs), originating from the diffuse neuroendocrine system, can arise in almost any 

tissue. They represent a diverse group of neoplasms with varying clinical features, pathology, and prognosis1. 

Lung neuroendocrine tumours (NETs) and carcinomas (NECs, including small-cell lung cancer [SCLC] and large-

cell neuroendocrine carcinoma [LCNEC]) are considered distinct diseases due to their differing aetiologies, with 

NECs strongly linked to smoking, unlike NETs2,3. Lung NETs, also classically known as typical and atypical 
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carcinoids, account for 2% of primary lung cancers, with rising incidence, and largely unknown aetiology and 

pathogenesis4,5. According to the World Health Organisation (WHO) Classification of Thoracic Tumours, mitotic 

count and necrosis differentiate grade-1 typical from grade-2 atypical carcinoids, with five-year survival rates 

exceeding 90% and 60%, respectively3,6. The current morphological classification has limited predictive value for 

treatment response, and its prognostic value is hindered by significant inter-observer variability in distinguishing 

typical from atypical carcinoids7. Our recent work on emerging markers and deep learning to address this inter-

observer variability suggests that the potential of current morphological criteria for classifying lung NETs into 

typical and atypical types may have been exhausted8. In a previous study, we identified three distinct molecular 

groups with different molecular features (Ca A1, Ca A2, and Ca B9,10), validated in independent studies, each 

comprising a mixture of typical and atypical tumours, and which are starting to guide clinical research11–14. 

However, the differing information provided by the morphological and molecular classifications poses a dilemma 

for their implementation in clinical practice, and clarification is required regarding the relationship between and 

utility of the two lung NET classification systems1,15. Our previous results also pose a challenge to lung NEN 

classification in general, given that we identified a new entity, the “supra-carcinoid,” with low-grade morphology 

but molecular and clinical features resembling those of high-grade NENs (SCLC and LCNEC)9. The discovery of 

supra-carcinoids further complicates current classification and clinical management by questioning the 

assumption that lung NETs and NECs are unrelated diseases16. Additionally, the limited number of samples has 

hindered the identification of diagnostic or targetable features of this aggressive group. 

In the current study, we leverage a comprehensive dataset of multi‐omic data on 319 

histopathologically annotated tumours and associated whole-slide images, primarily from the lungNENomics 

network8 (Extended Data Fig. 1a), performing state-of-the-art spatial omics and deep learning analyses to 

establish a unified morpho-molecular classification of lung NETs aimed at improving prognosis and treatment. 

We identify the fourth distinct molecular group of lung NETs as being supra-carcinoid enriched (sc-enriched), 

and that each of the molecular groups (Ca A1, Ca A2, Ca B, and sc-enriched) present with unique aetiology, 

clinical and epidemiological features, molecular profiles, microenvironmental niches, and evolutionary histories, 

suggestive of different diseases. These molecular groups are independent of but complementary to the current 

morphological classification, with molecular data revealing tumour biology and guiding future clinical 

interventions, while grading, as in the current WHO classification, remains key for prognostication. We also 

provide compelling morphological and molecular data characteristic of supra-carcinoids, explaining their 

biological link with lung NECs. These data consolidate supra-carcinoids as a new biological entity and provide a 

window into the so far unrecognised lung NEN plasticity. 

Supra-carcinoids: the fourth biologically distinct group of lung neuroendocrine 

tumours 

We conducted Multi-Omics Factor Analysis (MOFA17) incorporating gene expression, DNA methylation, small 

and structural variants, and copy number variant data on a cohort of 319 lung NETs, enriched for the aggressive 

atypical type, primarily sourced from the lungNENomics network (Extended Data Fig. 1a, Supplementary Figs. 

S1 and S2, Supplementary Tables S1-S5). Archetype analyses (ParetoTI18,19) identified four distinct molecular 

profiles, aligning with the three previously known molecular groups (Ca A1, Ca A2, and Ca B9) and a fourth, 
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enriched for supra-carcinoids (sc-enriched or sc-e, 14/16 tumours were supra-carcinoid, Fig. 1a, Extended Data 

Fig. 1b, Supplementary Fig. S3, Supplementary Tables S1 and S6). Both grade-1 (typical) and grade-2 (atypical) 

NETs were found in each group, as well as differing proportions and distinct variations in sex, age, and tumour 

location (Fig. 1b, Supplementary Tables S1 and S7, P value < 0.05 for all features cited as enriched thereafter, 

Binomial tests). Ca A1 was enriched for females (80%), patients aged over 40 (90%), typical tumours (60%), and 

distal locations (72%). Similarly, Ca A2 was enriched for females (64%) and typical tumours (65%), but featured 

younger patients (42% under 40, comprising nearly all under 40 cases), and mainly proximal tumours (90%). Ca 

B showed no predominance for a particular tumour type or location but was enriched for males (77%) and 

patients over 40 (97%). The sc-enriched molecular group displayed no statistically significant enrichment but 

had a higher proportion of atypical tumours compared with other groups (62%, P value = 1.4 × 10⁻⁴ to 0.035, 

Fisher’s exact tests). Regarding potential causative factors, no smoking history differences were found, but we 

noted a significant difference in asbestos exposure between groups (q value = 0.03, Fisher’s exact test), albeit in 

low numbers of patients (n = 1 in Ca A1 and Ca A2, n = 2 in sc-enriched, and n = 5 in Ca B, Supplementary Tables 

S1 and S7). Notably, 19 of 26 patients with a prior cancer diagnosis belonged to Ca A1, a higher number than in 

Ca A2 and Ca B (n = 3 and 1, P values = 2.14 x 10-3 and 7.22 x 10-4, respectively, Fisher‘s exact tests). The remaining 

three patients with a previous cancer diagnosis were sc-enriched, also significantly more than in Ca A2 and Ca B 

(P values = 1.38 x 10-2 and 5.62 x 10-3, respectively, Fisher’s exact tests, Supplementary Tables S1 and S7). 

Survival analysis revealed significant differences among groups (Fig. 1c). Ten-year overall survival (OS) rates were 

86% for Ca A1, 83% for Ca A2, 70% for Ca B, and 60% for sc-enriched (Supplementary Table S8). Atypical 

carcinoids showed worse survival than typical carcinoids when corrected for molecular group (overall and event-

free survival P values < 1 × 10⁻⁴, Wald tests, Supplementary Table S8), suggesting that both molecular groups 

and morphological types have orthogonal prognostic values.  

As lung NETs are one of many types of neuroendocrine neoplasms, we wanted to investigate the 

position of lung NETs within the spectrum of lung NENs and NETs from other body sites. Dimension-reduction 

analysis of RNA-seq data from 393 lung NENs and 241 gastroenteropancreatic NETs20–22 revealed that only the 

lung NETs formed distinct within-organ molecular groups, while other NETs clustered homogenously by their 

organ of origin (Fig. 1d). This indicates that strikingly different within-organ molecular groups are a unique 

feature of lung NETs. As a measure of molecular group distinctiveness, as exemplified by Fig. 1d, and how well 

our four-group classification captures differences between lung NET patients in comparison to the existing 

morphological classification, we calculated the percentage of molecular variation explained by the current 

classifications. We found that the four groups explain more inter-patient molecular variance than the WHO 

Classification of Thoracic Tumours3, be that of lung NETs, lung NECs, or even that of all lung carcinomas (Fig. 1e). 

This demonstrates the potential of lung NET molecular groups to be the basis of a new, more biologically 

grounded classification. 

Lung NET molecular groups are also associated with distinct tumour microenvironments (TMEs). Our 

previous study identified dendritic cell enrichment in Ca A1 and monocyte enrichment in Ca B9, which was 

confirmed in a single-cell analysis study that concluded tumour-intrinsic features drive immune cell 

differences23. Using transcriptomic data and cell deconvolution methods24,25, we found the sc-enriched group 
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had significantly higher immune infiltration and cancer-associated fibroblast (CAF) levels (Extended Data Fig. 1c-

d, Supplementary Tables S9 and S10), aligning it with recently proposed immune- and stromal-rich tumour 

immune archetypes26,27 (Fig. 1f, Supplementary Fig. S4, Supplementary Table S11). Each molecular group 

showed a dominant immune cell type: dendritic cells in Ca A1, alternatively activated (“M2”) macrophages in Ca 

A2, monocytes in Ca B, in line with the male bias in this group28, and classically activated (“M1”) macrophages24,29 

in sc-enriched, though cell proportions varied within groups (all P values < 0.05, Pearson correlation tests, Fig. 

1g, Supplementary Tables S9 and S12). Further to this, the molecular groups Ca A1, Ca A2 and Ca B could also 

be distinguished through the expression of immune-related proteins within tumoural and microenvironmental 

regions (Supplementary Figs. S5, S6 and S7, Supplementary Tables S13 and S14).  

These findings confirm the distinctiveness and robustness of the molecular groups and establishes 

supra-carcinoids as a clear molecular group rather than isolated cases. The molecular groups are associated with 

unique clinical, epidemiological, and microenvironmental characteristics, potentially suggestive of different 

carcinogenic processes.  

 

Lung NET molecular groups harbour specific genomic drivers 

As compared to 25 cancer types in the Pan Cancer Analysis of Whole Genomes (PCAWG) consortium30, lung NETs 

have relatively quiet genomes, with below median levels of structural variants (SVs, 11 per tumour in lung NETs 

versus 64 in PCAWG), copy number variants (CNVs, 4% of genome amplified versus 8% in PCAWG, and 2% 

deleted versus 3% in PCAWG), and small variants (SNVs, 2175 per tumour versus 6243 in PCAWG, 

Supplementary Fig. S8a-b, Supplementary Tables S15-S20). However, the four molecular groups show distinct 

genomic profiles as compared to one another. The sc-enriched, Ca B, and Ca A1 groups have the highest small 

variant burden (Supplementary Fig. S8c, Supplementary Table S20), mostly due to a higher contribution of 

endogenous mutational processes (age-related COSMIC signatures SBS1, and SBS8, possibly due to late 

replication errors, Supplementary Fig. S9a-b, Supplementary Table S21). The sc-enriched and Ca A1 groups also 

have the largest SV burden, primarily due to more numerous translocations (R2 SV signature) and deletions 

(Supplementary Fig. S8d-f, Supplementary Table S21). In accordance with the greater small variant, SV, and 

deletion burden of sc-enriched samples, signature variability analysis31 showed that sc-enriched tumours display 

significantly more diverse mutational repertoires, suggesting that they undergo more mutational processes than 

tumours from other groups (Supplementary Fig. S9c, Supplementary Table S21). In contrast to other groups, 

Ca A2 have the least of all variants except for amplifications (Supplementary Fig. S8e, Supplementary Table 

S20). Given the association between genomic instability and increased malignancy in cancer, and the 

observation that molecular groups contain both grade-1 and 2 tumours (Fig. 1b), we additionally investigated 

genomic alterations by histological type. We found that the types also differ in mutational burdens, with grade-

2 tumours presenting more small variants, SVs, and deletions than grade-1, in accordance with the poorer 

prognosis of grade-232 (Supplementary Fig. S8c-f, Supplementary Fig. 10d, Supplementary Table S20). 

Interestingly, we find that the effect of grade is nested within that of molecular types, with grade-2 Ca A1 having 

generally more small variants, SVs and deletions that their grade-1 counterparts, grade-2 Ca A2 having more 

small variants, SVs, and amplifications than grade-1 Ca A2, and grade-2 Ca B having more deletions than grade-
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1 Ca B (Extended Data Fig. 2a, Supplementary Table S20). This suggests that grade-2 tumours may have 

accumulated greater numbers of alterations in a molecular group-specific pattern, i.e. deletions in Ca A1, and 

amplifications in Ca A2. 

Next, we used computational methods to identify driver alterations involved in carcinogenesis. Eight 

significantly recurrent CNV events were identified as drivers at the cohort level, and an additional three at the 

level of individual molecular groups, of which most were chromosome-arm or whole-chromosome events. These 

were amplifications of chromosomes (chr) 4 (Ca B-driver), chr 5 (encompassing TERT), chr 7, chr 8 (Ca A2-driver), 

and chr 14p (overall and Ca A1-driver), and deletions of chr 1p13.3, chr 3 (encompassing BAP1, overall and Ca 

A1-driver), chr 11q13.1 (including the MEN1 locus), and chr 11 (Ca B-driver) (Fig. 2a, Extended Data Fig. 2b-c, 

Supplementary Table S17). Large-scale chromosomal aberrations were identified with whole genome doubling 

(WGD) being the most frequent (11%, n = 11) and shattered chromosomes indicative of chromothripsis or 

chromoplexy found in 11% (n = 11) (Fig. 2b, Supplementary Fig. S10, Supplementary Table S17). WGD was 

observed across all molecular groups (P value = 0.75, Fisher’s exact test) while the presence of shattered regions 

differed by group (P value = 0.045, Fisher’s exact test), whereby they were more frequent in sc-enriched 

compared with Ca B samples (P value = 0.025, Fisher’s exact test). No homologous recombination deficiency or 

microsatellite instability were detected (Supplementary Tables S17 and S22). The IntOGen pipeline33 discovered 

ten driver genes based on small variants (Fig. 2b, Supplementary Table S23). As previously reported9, MEN1 was 

the most frequently altered driver gene (loss of function), with somatic small variants found in Ca B (n = 9) and 

sc-enriched (n = 2) samples. In Ca B, 45% of sequenced samples had MEN1 inactivation, either via mutation (8%), 

deletion (8%, chr 11q13.1 focal), or both (29%). ARID1A was the second most altered driver (loss of function, n 

= 8), followed by EIF1AX (activating, n = 6), and ATM (loss of function, n = 5). Two sc-enriched had BRAF V600E 

mutations. MEN1 alterations were significantly enriched in Ca B (P value = 5.0 x 10-3), while BRAF mutations 

were exclusive to sc-enriched (P value = 0.01), as were EIFIAX to Ca A1, though not significantly associated. We 

have previously reported that chromatin-remodelling genes were frequently mutated in lung NETs34. Here we 

found significant enrichment for epigenetic regulatory genes, and specifically histone modifiers, within genes 

harbouring damaging small variants (P value = 3.1 x10-11 and 6.9 x 10-7, Fisher’s exact test, respectively, 

Supplementary Table S24). In line with their higher mutational and CNV burdens, grade-2 tumours also had 

significantly more driver events than grade-1 overall (P values = 0.016 and 0.036, small variants and CNVs, 

respectively, logistic regression). This grade-effect was additionally apparent within the Ca A1 molecular group 

(small variant drivers, P value = 0.023). 

 

Each group also exhibited differences in acquired hallmarks of cancer based on their small variants35,36, 

with sc-enriched tumours showing significantly more hallmarks of cancer impacted by small variants than the 

other three groups (P value = 1.3 x10-2 compared to Ca A1, 7.4 x10-3 compared to Ca A2, and 2.0 x10-2 compared 

to Ca B, two-sided Mann-Whitney U test, Extended Data Fig. 2d, Supplementary Table S25). Three hallmarks 

were significantly enriched in sc-enriched tumours: cell replicative immortality, escaping immune response to 

cancer, and proliferative signalling (logistic regression model P value = 1.5 x10-2, logistic regression model P value 

= 4.3 x10-2, and Fisher’s exact test P value = 3.2 x10-2, respectively, compared to Ca A1, Supplementary Fig. 
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S11a,b, Supplementary Table S25). Hallmark acquisition also increased with histological grade, overall and 

within the Ca A2 molecular group (P values = 1.2 x10-2 and 0.047, respectively, Supplementary Fig. S11c, 

Supplementary Table S25). 

Finally, given the association of Ca A1 with history of cancer, and young age at diagnosis with Ca A2, we 

investigated pathogenic and likely pathogenic37 germline variants within the cohort. One patient with a Ca A1 

tumour had a germline MEN1 alteration and a concurrent report of a neuroendocrine genetic disorder, and two 

other patients, within Ca A1 and Ca B, were reported to have neuroendocrine genetic disorders, however, no 

WGS data were available for the latter. Investigation of their RNA-seq profiles was suggestive of germline MEN1 

alterations given the high allelic fractions for these two patients. No additional recurrent germline variants were 

identified that clearly suggested underlying genetic susceptibility within the cohort, or within a specific 

molecular group (Supplementary Table S26). 

In summary, we show that despite their low tumour mutational burden, lung NETs are a disease of the 

genome, with at least one genomic driver identified in most tumours (Extended Data Fig. 2e). We find that these 

drivers differ by molecular group, and increase in number with grade, further demonstration of the strong 

differences among molecular groups.  

 

A unifying molecular classification offering a single framework for patient stratification 

To understand the characteristic biological pathways underpinning each molecular group, core upregulated and 

downregulated genes were identified for each group based on significant positive or negative associations with 

archetype proportions (Supplementary Tables S27 and S28). Expression profiles were also examined to assess 

the relationship between molecular groups and previously proposed lung NEN subtypes and biomarkers.  

Ca A1 displayed the most neuroendocrine-like profile, having the highest expression of lung 

neuroendocrine gene markers (Extended Data Fig. 3a, Supplementary Table S29), and in line with this was the 

only molecular group to harbour enrichment within core upregulated genes for those highly expressed in lung 

neuroendocrine cells38 (Supplementary Table S30). Pathway analysis of core upregulated genes highlighted 

nervous system functions, including synaptic signaling (SYT1, and SYT10, and potassium channel (KCN) and 

GABAA receptor families), nervous system processes (GABAA receptor family), and regulation of 

neurotransmitter levels (SYT1, SYT10, GABRA2)39,40 (Fig. 2c). The enrichment for nervous system function 

pathways within Ca A1 may suggest a role for the nervous system in carcinogenesis, for instance GABAergic 

neurons within the TME have been shown to promote tumour cell proliferation and immune escape through 

interactions with GABAA receptors expressed by tumour cells41. Alternatively, it could reflect the neuroendocrine 

origin of Ca A1 and suggests they may be relatively more similar to neuroendocrine cells than other molecular 

groups. Potential master transcription factors42 (TFs) for the Ca A1 molecular group included proneural TFs 

ASCL140 and MYTL143 (Fig. 2c), and in line with this, almost all Ca A1 tumours were of the proneural regulatory 

subtype, identified through analysis of cis-regulatory elements in lung NETs by Davis et al.44 (Fig. 2d, 

Supplementary Table S31). Delta-like protein 3 (DLL3), a direct downstream target of ASCL1, was identified as a 

Ca A1 core upregulated gene in our previous analysis of a smaller cohort9 and was significantly positively 

associated with Ca A1 archetype proportion in the current study, however, it fell just below the fold-change 
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requirement to be classified as a core gene (0.95) (Extended Data Fig. 3b, Supplementary Table S32). The 

elevated DLL3 gene expression levels observed in Ca A1 tumours have been shown to be correlated with higher 

protein expression12, making these tumours suitable candidates for treatment with DLL3 inhibitors. DLL3 

inhibitors have shown promise for the treatment of lung NECs, and proof of concept was recently shown in a 

case report for lung NET45.  Antibody drug conjugates (ADCs) targeting DLL3, previously trialed in SCLC46, may 

also be of benefit to Ca A1.  

Ca A2 and Ca B shared high expression of HNF genes, including HNF1A and HNF4A47, characteristic of 

the HNF+ and Luminal regulatory subtypes described by Davis et al.44 (Fig. 2d, Extended Data Fig. 3c, 

Supplementary Table S31). Consistent with their findings44, we confirm that Ca A2 and Ca B were associated 

with higher expression of FGFR3 and FGFR4, which may be amenable to treatment with currently available FGFR 

inhibitors48 (Extended Data Fig. 3c). However, Ca A2 and Ca B differed in their expression of the neuronal TF 

OTP49, identified as a potential master TF for Ca A2 and a core downregulated gene in Ca B, indicating Ca B likely 

encompasses the Luminal regulatory subtype (Fig. 2d, Supplementary Tables S27 and S31). Low OTP expression, 

as exhibited by Ca B and sc-enriched (Fig. 2c), has also been previously associated with poor patient prognosis, 

as reported by Moonen et al.49. Ca A2 displayed high SSTR2 and SSTR5 expression, therapeutic targets currently 

exploited in the treatment of both lung and extrapulmonary NENs with somatostatin analogues and 

radioligands50–52 (Supplementary Tables S32 and S33). Lastly, Ca B was characterised by downregulation of 

NKX2-1 (core downregulated gene), and upregulation of UGT genes, located on amplified chr 4, crucial for the 

elimination of toxic xenobiotic compounds53, suggesting environmental exposures may be involved in the 

development of Ca B (Fig. 2a,c, Extended Data Fig. 3d, Supplementary Table S27).  

Sc-enriched samples had the greatest number of core upregulated genes, most of which were 

associated with the immune system, including a high proportion of chemokine ligand genes, with 56% of the 

core upregulated genes linked to regulation of immune system process, leukocyte migration, or regulation of 

humoral immune response (Fig. 2c, Supplementary Tables S27 and S28). The prominence of immune system 

pathway overexpression is in line with the findings that sc-enriched were most often classified as having an 

immune-rich microenvironment archetype (Fig. 1f, Supplementary Table S11) and suggests an opportunity for 

immunotherapy treatment for this group. We subsequently examined expression of a panel of 18 genes that 

capture a T-cell inflamed phenotype and is associated with response to PD-1 inhibitor pembrolizumab in nine 

different cancer types54. Mean expression was significantly higher in sc-enriched than other molecular groups (P 

values < 8.22 x 10-9, Supplementary Table S34), a promising finding given the higher expression observed in 

pembrolizumab responders54. An additional potential therapeutic option for sc-enriched may be an ADC 

targeted to TROP2 (TACSTD2), a core upregulated gene in sc-enriched, that has been investigated for use in 

SCLC46. Unlike other molecular groups, the sc-enriched core upregulated genes were enriched for hallmarks of 

cancer (seven out of ten), including escaping immune response to cancer and proliferative signalling (q values < 

0.05, Fisher’s Exact Tests, Extended Data Fig. 3e), both also identified through small variant hallmark enrichment 

(Supplementary Fig. S11, Supplementary Table S25). In line with this, sc-enriched tumours had the highest 

proliferation index55,56, even when considering grade-2 tumours only (Supplementary Tables S1, S33, and S35).  
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Given the similarity between supra-carcinoid and lung NEC molecular profiles9,10 (Supplementary Table 

S4), we examined the alignment between lung NETs and proposed markers for TF-driven subtypes of SCLC. SCLC-

A, SCLC-N, SCLC-P, and SCLC-I are characterised by elevated ASCL1, NEUROD1, or POU2F3 expression, or low 

expression of all three alongside an inflamed gene signature and YAP1 expression, respectively57. Our analysis 

revealed that Ca A1, Ca A2 and Ca B lung NETs either fell into the SCLC-A subtype (mainly Ca A1, aligning with 

the proneural lung NET subtype), or were negative for all three markers (Extended Data Fig. 3f). In the case of 

sc-enriched, they displayed the highest inflamed score (SCLC-I), but interestingly approximately half were also 

ASCL1-high (Extended Data Fig. 3f,g). 

Finally, we examined the relationship between molecular groups and the recently proposed marker of 

lung NET prognosis, TERT expression. High expression of TERT was found to be predictive of prognosis 

independently of tumour grade58. Here, we found that while TERT was a core downregulated gene in Ca A2 

(Extended Data Fig. 3h, Supplementary Table S27), a subset of tumours in Ca A1 and Ca B were TERT high, and 

importantly, high expression was associated with worse prognosis within these molecular groups, making it a 

therapeutic option for a subset of these tumours (Fig. 2d, Supplementary Table S36). 

The current morphological classification, despite its prognostic value, provides little information for 

therapeutic management. In contrast, our findings demonstrate the ability of molecular groups to provide a 

clear framework for patient treatment stratification, notably DLL3 and EGFR inhibitors59, and DLL3 ADCs for Ca 

A1, FGFR inhibitors for Ca A2 and Ca B, SSTR analogues and radioligands for Ca A2, BRAF inhibitors, TOPO2 ADCs, 

and immunotherapies for supra-carcinoids, and TERT inhibitors for the most aggressive forms of Ca A1, Ca B, 

and sc-enriched. These molecular groups also capture previously proposed classifications by Laddha et al.11, and 

Davis et al.44 and even partially overlap with SCLC subtypes57. Given these features, we believe our molecular 

groups are the ideal classification to combine with existing morphological (or novel biomarker) grading, for 

optimal clinical management. A key challenge remains in its implementation in clinical practice. To address this, 

we evaluated the recently proposed immunohistochemistry (IHC) lung NET classification panel12 in our cohort. 

Leunissen et al. demonstrated that a combination of ASCL1, HNF1A, and OTP protein expression could accurately 

classify a small cohort of lung NETs into their known molecular group (Ca A1, Ca A2, and Ca B) based on a subset 

of our series (n = 15). Applying the panel to 90 additional samples in our series (n = 30 each of Ca A1, Ca A2, and 

Ca B) resulted in a predicted molecular group for 77% of samples. Of the classified samples, 99% were correctly 

predicted, and only one was misclassified (Ca B predicted to be Ca A2) (Fig. 2e, Supplementary Figure S12, 

Supplementary Table S37). Despite a portion of tumours remaining unclassified, these data validate the IHC 

classification panel proposed by Leunissen et al., paving the way for its implementation in the clinical setting. 

 

Whole-slide image deep learning reveals hidden morphological features linked to 

molecular groups 

Despite the good performance of an IHC panel in distinguishing molecular groups, a number of tumours were 

unable to be classified, therefore we investigated morphological features to determine whether tumour 

morphology differed between molecular groups, and thus whether it could have potential use in diagnosis and 

classification. For this, a self-supervised deep learning model based on Barlow Twins60 was trained on patches 
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of whole slide images (WSIs), called tiles, extracted from haematoxylin/eosin or haematoxylin/eosin/saffron 

(HE/HES) stained slides, that then clustered the tiles into partitions which shared common morphological 

features (Fig. 3a Self-supervised branch). A random forest model trained on tile proportions in relevant 

morphological partitions performed poorly in predicting histological types, achieving a weighted F1 score of 0.34 

(Fig. 3b, Supplementary Tables S38 and S39, Supplementary Fig. S13). Interestingly however, applying the same 

method to predict the three most common molecular groups (Ca A1, Ca A2, and Ca B, for which sufficient 

samples for analysis were available) from relevant morphological partitions yielded much better performance, 

with a weighted F1 score of 0.72 (Fig. 3b, Supplementary Tables S38 and S39, Supplementary Fig. S14).  

A supervised deep learning model based on RoFomer-MIL61 was then used to identify the most relevant 

tiles for molecular group classification, via an attention mechanism (Fig. 3a Supervised branch), and subsequent 

morphological examination for a human interpretation of AI results (Fig. 3a Interpretation branch, 

Supplementary Fig. S15). This interpretable deep learning model achieved equally good performance in 

classifying 193 WSIs into molecular groups, with a weighted F1 score of 0.72 (Fig. 3b,c, Supplementary Tables 

S39-S41). Tiles with the highest attention scores (i.e., those most relevant for distinguishing between the groups) 

were extracted and grouped into morphological partitions. Random tiles (n = 1,095 in total, from 128 different 

patients) from the most promising partitions, i.e., partitions most likely to be informative about cell morphology 

and patient molecular groups (Extended Data Fig. 4a, Supplementary Fig. S16, Supplementary Table S42), were 

then meticulously annotated by a panel of six expert pathologists to identify whether key morphological features 

were characteristic of any particular group (Fig. 3a Interpretation branch, Supplementary Tables S43-S45, 

Supplementary Figs. S17 and S18). This analysis demonstrated that Ca A1 tumour cells more frequently had a 

spindle shape (q value < 1 x10-4, captured by partitions 4, 72, 21, 22, 32, 43 and 66, Supplementary Fig. S17), in 

line with a previous report of spindle cell enrichment within a cluster of Ca A1-like carcinoids62 (dominated by 

typical, peripheral tumours in women, distinctive features of Ca A1, Fig. 1b), and also in line with the higher 

epithelial-mesenchymal transition (EMT) score observed in Ca A1 tumours (Extended Data Fig. 4b, 

Supplementary Tables S1, S33 and S35). Ca A1 tumours also more frequently displayed nested cells (q value < 

1 x10-4, partitions 22, 30, 32, 34, and 66), solid tissue architecture (q value = 9.67 x10-4, partitions 5, 21, and 66), 

cells with clear cell changes (q value < 1 x10-4, partitions 22, 32, 34, and 66), and an enrichment for salt and 

pepper chromatin (q value = 4.71 x10-3, 14 partitions, Supplementary Fig. S17). Ca A1 and A2 tumours shared 

an enrichment for fibrotic tissue (q value = 9.75 x10-3, partitions 30, 32, 58, and 66, Extended Data Fig. 4c, 

Supplementary Fig. S17). Ca A2 tumours more frequently had a plasmacytoid cells (q value < 1x10-4, partitions 

5, 21, 34, 43, and 68), oncocytic changes (q value = 4.71 x10-3, partitions 22 and 34), and organoid tissue 

architecture (q value < 1 x10-4, partitions 13, 44, 59, 64, 5, 15, 43, 48, and 68, Extended Data Fig. 4c, 

Supplementary Fig. S17). Ca A2 and B tumours also had more frequently an acinar tissue architecture than Ca 

A1 tumours (q value = 0.0263, Supplementary Fig. S18). Tumour cell size was also found to be slightly different 

between the groups, with Ca A1 having marginally but significantly smaller cell sizes (q value = 5.80 x10-4) and a 

smaller nucleus to cytoplasm ratio (q value = 0.0346, Supplementary Fig. S18). Additional features were highly 

specific to certain partitions, such as cartilaginous tissue in partition 70, which was enriched for Ca A2 and Ca B 

(Extended Data Fig. 4c, Supplementary Fig. S17). This finding is likely related to the proximal location of these 
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tumours compared with Ca A1 (Fig. 1b) and importantly demonstrates the biological and clinical relevance of 

the model outputs. We then chose to test the generalisation of two key features to the entire WSI, rather than 

randomly selected tiles, that may allow us to distinguish between groups. We selected spindle cells (associated 

with Ca A1) and fibrotic tissue (associated with Ca A1 and Ca A2), as they can be easily assessed by pathologists 

and were among the most statistically significant features associated with the groups. To perform this 

generalisation, we automatically estimated the presence of the features using the visual-language model 

CONCH63 (Fig. 3a Generalisation Branch). This demonstrated that spindle cell shape was indeed characteristic 

of Ca A1, and interestingly, this feature was also common in supra-carcinoid samples (Fig. 3d, Extended Data 

Fig. 4c,d). The analyses further confirmed that the absence of fibrotic tissue was associated with Ca B (Fig. 3d, 

Extended Data Fig. 4c,d).  

These findings suggest that differences among molecular groups translate into distinct morphological 

features detectable by deep learning, such as spindle cells in Ca A1 tumours, the presence of fibrotic tissue in Ca 

A1 and Ca A2, and its absence in Ca B. As an illustration, we show examples of WSIs correctly classified with high 

confidence by the RoFormer-MIL deep learning model (probability >0.95) in Fig. 3e, along with the high-

attention regions used by the algorithm that could prompt future pathological examinations. We can see that 

the algorithm indeed mostly focused on tiles with spindle cells and solid morphology to predict the Ca A1 tumour 

(partition 66), on regions with organoid tissue architecture to predict the Ca A2 tumour (partitions 59 and 73), 

and on regions with round cells and cartilage to predict the Ca B tumour (partitions 26, and 70, respectively). 

Using a selection of these deep learning-identified features, spindle cells, organoid and solid architecture, and 

fibrosis, the unclassified/misclassified cases from the previous IHC experiment (n = 22, Fig. 2e) were reassessed, 

and nine were able to be correctly grouped, despite their status as more complex cases (Supplementary Figure 

S12, Supplementary Table S37). A more detailed morphological evaluation, focusing on the characteristic 

features of each molecular group identified through the aforementioned WSI deep learning analyses, combined 

with the validated IHC classification panel, may assist pathologists in achieving a definitive diagnosis in the 

clinical setting (Fig. 2e, Fig. 3e). 

 

Evolutionary trajectory and plasticity of lung NET molecular groups 

The existence of distinct molecular groups of lung NETs suggests varied carcinogenesis processes, potentially 

influenced by differences in cells of origin, genomic events, and the TME. Understanding the origin and temporal 

evolution of such groups may aid in designing strategies to monitor and intercept tumour progression.  

 

We first explored whether the groups had different cell states64, hinting at different cells of origin or 

varied cell differentiation trajectories after the onset of carcinogenesis. To do so, we compared lung NET bulk 

RNA-seq-based expression profiles with a panel of single-cell sequencing reference profiles. To accurately 

represent the potential neuroendocrine cellular states of lung NETs, we used a reference profile made up of 

epithelial cells from foetal lung tissue airway organoids65, enriched for both lower airway progenitor (LAP) and 

pulmonary neuroendocrine cells66, as well as lung NET TME cells (stromal and immune)23 to avoid overfitting. 

Deconvolution of lung NET molecular groups revealed that most tumours contained a mix of the terminally 
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differentiated neuroendocrine cell types, and club cells, however proportions did vary within and between 

molecular groups (Fig. 4a, Supplementary Table S9). Ca A1 had the highest proportion of differentiated 

neuroendocrine cells (Fig. 4b, Supplementary Tables S9 and S46), consistent with its enrichment for 

characteristic lung neuroendocrine cell genes38 and nervous system function pathways found in upregulated 

genes, as well as the proneural nature of putative driver TFs ASCL1 and MYTL1 (Fig. 2c, Extended Data Fig. 3a,f, 

Supplementary Tables S28-S31). Ca B contained the highest proportion of club cells, thought to be important in 

the elimination of xenobiotic compounds67 and in line with the high expression of UGT genes in Ca B (Fig. 2c, 

Supplementary Table S27), whereas Ca A2 displayed a mixed profile of both differentiated neuroendocrine cells 

and club cells (Fig. 4a,b, Supplementary Tables S9 and S46). The pulmonary NE precursor, LAPs, were found in 

the highest proportion in sc-enriched samples and were virtually absent in Ca A1, Ca A2 and Ca B (Fig. 4b, 

Supplementary Tables S9 and S46), supporting their loss of neuroendocrine phenotype and suggesting an 

undifferentiated, stem-like cellular state (Extended Data Fig. 3a, Supplementary Table S29). Additionally, sc-

enriched tumours had similar levels of LAP and differentiated neuroendocrine cells to LCNEC, reflecting their 

LCNEC-like molecular profile (Fig. 4b, Supplementary Tables S4, S9 and S46). Spatial transcriptomic analysis of 

four lung NET samples (supra-carcinoids) showed that these cell types occupy distinct spatial locations, with 

clear separation between terminally differentiated areas and LAP areas (spatial correlations ranging from -0.29 

to 0.01, and from -0.36 to 0.05, Fig. 4c, Extended Data Fig. 5a, Supplementary Figs. S19-S21, Supplementary 

Table S47). Interestingly, this spatial analysis of supra-carcinoids also demonstrated that these tumours contain 

regions with a molecular profile similar to that of the Ca A1 or Ca B molecular groups as well as sc-enriched 

(Supplementary Fig. S19). As expected from our bulk analyses, we find that presence of the sc-enriched profile 

was significantly spatially correlated with that of the LAP cell profile (correlations ranging from 0.02 to 0.32), 

while presence of the Ca A1 and Ca B profiles were significantly spatially correlated with terminally differentiated 

cell profiles (correlations ranging from 0.14 to 0.67, Supplementary Figs. S19 and S20, Supplementary Table 

S47). 

The fact that supra-carcinoids harbour mixtures of different molecular components, each in a different 

microregion, with some resembling Ca A1 or Ca B tumours, suggests the possibility of a dynamic molecular 

profile where supra-carcinoids arise from the other molecular groups and then stay contained within 

microregions. To explore this hypothesis, we performed integrative analyses of 91 tumours from 41 patients 

using multi-regional, multi-omic sequencing. MOFA followed by archetype analysis of each region showed that, 

in 40 out of 41 patients, the different tumour regions belonged to the exact same molecular group, showing that 

groups are generally spatially stable (Fig. 4d, Extended Data Fig. 5b, Supplementary Table S48). Interestingly, 

the only tumour (LNEN107) that had regions belonging to different groups (Ca A1 and sc-enriched) was a supra-

carcinoid, suggesting that transitions between groups, though infrequent, are possible for supra-carcinoids (Fig. 

4d). Furthermore, within each patient the proportion of sc-enriched archetype per tumour region was the most 

variable of all archetype proportions (mean difference of 0.080 versus 0.045 for the other archetypes, P value = 

0.0298, t-test, Extended data Fig. 5b, Supplementary Table S48), suggesting that some Ca A1, A2, and B tumours 

possess a small and localised supra-carcinoid component. In addition to this intra-tumoural heterogeneity (ITH), 

we found that the sc-enriched molecular group displayed the most inter-patient heterogeneity of all groups, 
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with mean Euclidean distance between samples of 1.81 versus 0.94-1.31 for the other groups (Supplementary 

Table S48). This variability was also exemplified by two supra-carcinoid samples having molecular profiles closer 

to that of Ca A1 than to samples from the sc-enriched group (Table 1, Supplementary Table S49). 

Most driver mutations were clonal and almost exclusive to a single molecular group, including EIF1AX 

(only in Ca A1), BRAF (only in sc-enriched), MEN1 (9/11 in Ca B), and ARID1A (4/6 clonal mutations in Ca A2, and 

no subclonal mutations in Ca A2), suggesting that molecular groups are determined early by genomic events 

(Extended Data Fig. 5c). This was further corroborated by phylogenetic analyses (REVOLVER method68), which 

identified 26 significant driver-to-driver trajectories (Fig. 4e, Supplementary Table S48). These phylogenetic 

analyses showed that alterations associated with the molecular groups such as chr 3 deletions, EIF1AX 

mutations, chr 5 amplifications, and MEN1 alterations/chr 11 deletions, were indeed predominantly initiation 

events, while alterations shared across groups such as chr 5 and 7 amplifications, and ARID1A mutations, were 

typically subsequent events (Fig. 4e, Extended Data Fig. 5d, Supplementary Table S48). In contrast, sc-enriched 

emerged through multiple trajectories which were common to other groups (e.g. chr 3 deletion, MEN1 

alterations, or chr 5 amplification, Extended Data Fig. 5d), further supporting the hypothesis that supra-

carcinoids can emerge from all molecular groups. Interestingly, because BRAF V600E mutations were only 

reported in supra-carcinoids, these mutations might constitute a direct route to this group without the need to 

pass through others. Grade was associated with the presence of a driver event, with grade-2 tumours more 

frequently having a driver event than grade-1 (P value = 0.011, Fisher‘s exact test), suggesting that genomic 

driver events may influence tumour proliferative activity. Molecular group was associated with the presence of 

secondary events, with sc-enriched all having undergone secondary driver events, further suggesting that they 

may have evolved from other entities (P value = 0.049, Fisher‘s exact test, Extended Data Fig. 4e, Supplementary 

Table S48). 

Although sc-enriched tumours did not have a single defining genomic driver, they shared a common 

stromal and immune-rich microenvironment characterised by fibroblasts and macrophages (predicted M1) (Fig. 

1g, Extended Data Fig. 1c,d, Supplementary Table S9), hinting that the TME might be the main common driver 

of supra-carcinoids. Indeed, the spatial transcriptomics data showed that sc-enriched regions within supra-

carcinoid samples were relatively small in size, with specific microenvironments, co-localising with macrophages 

and fibroblasts (Fig. 4c, Extended Data Fig. 5a, Supplementary Figs. S19 and S20, Supplementary Table S47). 

Nevertheless, it is noteworthy that we have previously successfully established a patient-derived tumour 

organoid for a supra-carcinoid (LNET10)59, suggesting that while the TME seems to play a key role in the 

development of supra-carcinoids, it may not be essential for maintaining their phenotype and growth.  

To further evaluate the role of tumour-TME interactions in lung NET carcinogenesis, we analysed 

tumour neoantigens. Neoantigens provide both an estimate of the degree to which a tumour is visible to the 

immune system and can also reveal how much selective pressure the immune system has exerted on the tumour 

in the past by comparing the non-synonymous to synonymous mutation ratio in antigen-rich versus antigen-

poor genomic regions (immune dN/dS ratio)69. Supra-carcinoids and Ca A1 tumours exhibited the highest 

neoantigen counts, though fewer than expected due to purifying selection from immune predation (immune 

dN/dS ratio < 1, Extended Data Fig. 5e). Ca A2 tumours presented very few neoantigens, presumably also due 
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to past immunoediting (ratio < 1), while Ca B tumours presented few neoantigens, but more than expected 

(dN/dS ratio >1), suggesting the presence of driver mutations among these neoantigens (Extended Data Fig. 5e). 

Interestingly, intrinsic patient characteristics may influence tumour evolution, as patients with Ca B tumours 

showed significantly higher HLA class I gene diversity (involved in antigen recognition) compared to other groups 

(Extended Data Fig. 5e), suggesting that their immune systems can recognize a broader range of antigens, 

consistent with findings that HLA diversity can protect against lung cancer70. However, this diversity might also 

drive tumour evolution through selective pressure. These results indicate that, despite their predominantly 

immune desert nature (Fig. 1f), the immune microenvironment of lung NETs actively contributes to tumour cell 

elimination and influences tumour evolution.  

Overall, these findings suggest that the cell state (or potential cell of origin), early genomic events, and 

the TME all contribute to the development of lung NET molecular groups, and that there may be grade 

progression within groups, supported by the increased TMB, driver alterations, and hallmarks seen in grade-2. 

Whilst Ca A1, Ca A2, and Ca B appear to be temporally stable, often determined by early genomic events, with 

transitions between them being either very rare or occurring very rapidly, the carcinogenic processes leading to 

the development of supra-carcinoid are less clear. Supra-carcinoids may emerge from other groups, perhaps 

through the dedifferentiation of neuroendocrine cells towards a LAP-like precursor either driven or 

accompanied by tumour cell interaction with macrophages and/or fibroblasts, or possibly directly through the 

acquisition of BRAF mutations.  

 

Supra-carcinoids within the spectrum of lung NEN 

In recent years, several studies have reported an emerging morphological entity of lung NETs with carcinoid 

morphology but higher mitotic counts and Ki-67 levels than expected for such grade-1/2 tumours, similar to the 

already established grade-3 neuroendocrine tumours described in other organs (NET G3)71–75. Like other lung 

NETs, they display MEN1 mutations and lack RB1 and TP53 alterations, however, these tumours show more 

aggressive behaviour, with higher rates of postsurgical recurrence than expected for grade-2 (atypical) 

carcinoids (approximately 20-30%)15. Our data show that supra-carcinoids can be, but are not always, NET G3 

tumours. Indeed, supra-carcinoids showed more aggressive behaviour than other lung NETs9, with more cancer-

associated hallmarks, a worse 10-year overall survival rate, and more frequent pleural invasion (67% versus less 

than 5% in other groups), in line with previous reports indicating that visceral pleura invasion correlates with 

higher aggressiveness and poorer prognosis, regardless of tumour size76–78 (Fig. 1c, Extended Data Fig. 2d, Table 

1, Extended Data Fig. 3e, Supplementary Tables S1, S8 and S49). However, although these tumours have higher 

MKI67 gene expression levels than other molecular groups, the proliferative activity estimated via Ki-67 protein 

expression shows only a moderate increasing trend, and both Ki-67 index and mitotic count remained within the 

expected range for grade-1 and grade-2 lung NETs, except for one tumour (Fig. 5a, Supplementary Table S49). 

This sample, a supra-carcinoid with high ki-67 and greater than 10 mitoses/2mm2, was classified as NET G3 by 

consensus during the central pathology review, along with a second sample from the Ca B molecular group (Fig. 

5b). Furthermore, when considering individual pathologist assessments, four additional samples were 

annotated by at least one pathologist as having more than 10 mitoses/2mm2: one was classified as sc-enriched, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2025. ; https://doi.org/10.1101/2025.07.18.25331556doi: medRxiv preprint 

https://doi.org/10.1101/2025.07.18.25331556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Unpublished manuscript | 15 

one as Ca A2, and the remaining two as Ca B (Fig. 5b). This suggests that samples across all molecular groups 

may have the potential to progress to NET G3 as part of their disease course mirroring the possible progression 

from grade-1 to grade-2 tumours within each molecular group.  

Another controversial question is whether supra-carcinoids may represent a transitional biological 

entity between lung NETs and NECs, which would then represent the two ends of a spectrum of highly stable 

tumour groups rather than two completely unrelated diseases79,80. Supporting this hypothesis is the recent 

identification of a subset of SCLC tumours with clinical and genomic similarities to lung NETs81. Like carcinoids, 

these aggressive tumours lacked the hallmark co-inactivation of RB1 and TP53 observed in SCLC82,83, and arose 

in light or never smokers, unlike most SCLC cases where >95% occur in heavy smokers84. They were additionally 

characterised by frequent chromothripsis, leading to extrachromosomal amplification. Importantly, several of 

these atypical SCLC were identified in metastases of patients with carcinoid primary tumours. These primary 

tumours displayed shattering events on chr 2, 3, 6, 7, 9 and 11, and thus demonstrate the possibility of NEC 

development through transformation of a lung NET via chromothripsis. In light of these cases, we report here 

upon a supra-carcinoid patient for which a patient-derived tumour organoid (PDTO) was created59. LNET10, a 

female never-smoker in the age range 16-40, was diagnosed with an atypical carcinoid at stage IA (T1bN0M0), 

with two mitoses/2mm2, focal necrosis, and Ki-67 index of 20% (Fig. 5c, top panel). Molecular analysis of both 

the primary tissue and PDTO passage 4 (p4) identified moderately high MKI67 expression (5 and 14 TPM, 

respectively), BRAF (V600E) and PTEN mutations, expression-based clustering with LCNEC59, and a 

chromothripsis-like clustered SV pattern affecting chr 9 similar to the aforementioned NETs with SCLC 

metastases81 (Fig. 5c, middle panel, Supplementary Tables S1, S4, S15 and S16). One year after diagnosis, 

metastatic disease in the skin and lymph nodes was noted, and the patient was then treated with BRAF and MEK 

inhibitors, dabrafenib and trametinib, respectively. After an initial response, bone and liver metastases 

developed, and biopsy of the liver metastasis followed by WGS revealed a deletion in exons 2–8 of BRAF, a 

known mechanism of resistance to BRAF inhibitor therapy, that was absent in the p4 PDTO. Crucially, based on 

the liver biopsy, the pathologist revised the diagnosis to LCNEC, suggesting that a full transformation to NEC may 

have occurred. This case report provides additional evidence that a low-grade NET may progress to a high-grade 

NEC in the context of chromothripsis, and suggests the previously identified atypical SCLC81 may in fact be fully 

transformed supra-carcinoids. 

The PDTO was one of the fastest-growing lung NET PDTOs, ~three months to passage three versus on 

average six months for the others, and displayed an increase in mutational burden and MKI67 gene expression 

over time, from the primary to passage 11 (p11, Fig. 5c, bottom panel), thus reflecting the tumour 

aggressiveness seen in the patient. We subsequently assessed the cell type make-up of the primary and PDTO 

passages, finding that while both the primary and p4 PDTO contained LAP cells, a unique feature of supra-

carcinoids (Fig. 4a,b), these were absent in p11 (Fig. 5c, bottom panel). There was also an observable shift from 

a NET-like to NEC-like profile over time, despite the lack of TME in culture (Fig. 5c, bottom panel), mirroring the 

patient’s progression. Although further experiments are warranted, our observations from spatial 

transcriptomics and organoid culture point to supra-carcinoids, promoted by the presence of LAP cells within a 
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specific TME, being a subset of lung NETs with the capacity to progress to lung NECs, and that their aggressive 

profile, once acquired, may be independent of the TME.  

 

Conclusion and perspectives 

The 2021 WHO Classification of Thoracic Tumours categorises lung NETs into grade-1 typical carcinoids and 

grade-2 atypical carcinoids. However, this classification has two major limitations. First, it does not account for 

newly emerging biological and morphological entities with more aggressive behaviour, such as supra-carcinoids 

and grade-3 lung NETs. Second, while tumour histology remains the gold standard for diagnosis and clinical 

decision-making, grading alone is insufficient for therapy selection and relapse prediction. This may be attributed 

to the fact that, although the WHO Classification of Tumours has progressively integrated molecular data for 

many cancers, the classification of lung NETs has remained largely unchanged for decades. The data from the 

lungNENomics project shows a partial overlap between molecular and histological classifications suggesting that 

each captures different aspects of the disease, highlighting their complementary clinical value (Fig. 6). These 

new data present a unique opportunity to refine the current morphological classification by incorporating new 

criteria that more accurately reflect tumour biology and clinical behaviour. Finally, combining our findings with 

recent data from Rekhtman and colleagues81 suggests that the aggressiveness of supra-carcinoids may be driven 

by a distinct undifferentiated cellular state that remains undetected within an apparently low-grade tumour 

until a specific trigger initiates its progression. This raises the question of whether supra-carcinoids represent a 

crucial intermediate stage in the multi-step carcinogenesis process leading to the development of a subset of 

neuroendocrine carcinomas, such as the carcinoid-like SCLC in never-smokers. This possibility warrants further 

investigation through new single-cell and spatial technologies and the use of longitudinal samples, allowing for 

deeper characterisation of this population of cells and their interactions with the TME. 

 

 

Additional content 

Methods, Main and Extended Data Figures, Supplementary Figures, and Supplementary Tables are available in 

separate files. 
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Methods 

See attached document entitled Methods_11072025_medrxiv.pdf 

 

Data availability 

Sequencing data are available on the European Genome-Phenome archive (study EGAS00001005979). 

Previously published data from Alcala et al.9 and Dayton et al.59 are also available on EGA (studies 

EGAS00001003699 and EGAS00001005752, respectively). 

 

Code availability 

The code used are available on IARC’s github repository https://github.com/IARCbioinfo/ under open-source 

licenses. In particular, the code to process the sequencing data (QC, alignment, variant calling) are listed at 

https://github.com/IARCbioinfo/IARC-nf, the code to process the whole-slide images are available at 

https://github.com/IARCbioinfo/WSIPreprocessing and https://github.com/IARCbioinfo/LNENBarlowTwins, and 

the code to analyse the data and reproduce the main results (Figures) is available on the github repository 

https://github.com/IARCbioinfo/MS_lungNENomics.  
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Tables 

Table 1 | Main features of supra-carcinoids (n = 16). 

Morphological features Histological type 2 typical, 11 atypical, 2 carcinoid, 
1 NET G3 

Mean mitotic count 5.5 

Mean % of ki-67 15% 

Pleural invasion 4 (out of 6 tumours) 

Clinical and epidemiological 
features 

10-year overall survival rate 47% 

Stage 3 IA, 3 IB, 1 IIA, 2 IIB, 1 IIIA, 1 IIIB, 
1 IIIC, 1 IV, 3 unknown 

Asbestos exposure 2 (out of 3) 
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Smoking 4 never, 2 former, 3 current, 7 
unknown 

Molecular features MEN1 damaging mutations 2 (out of 5) 

BRAF V600E 2 (out of 5) 

TERT overexpression 8 (out of 12) 

Diverse mutational repertoire Three hallmarks of cancer 
affected 

1330 core upregulated genes* Seven hallmarks of cancer 
affected 

Tumour microenvironment 
features 

Mostly linked with the immune 
system 

Immune infiltration 30% (quanTIseq estimate)  

Levels of cancer associated 
fibroblasts 

4% (EPIC estimate) 

*analysis performed with supra-carcinoid enriched molecular group, therefore included all supra-carcinoid with 
RNA-seq data (n = 12) and one non supra-carcinoid (LNET16T) 
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Figure 1. Molecular groups of lung NETs and their clinical and microenvironmental features. a, 319 tumours from the lung neuroendocrine tumour
(NET) cohort plotted over MOFA Latent Factors 1 and 2, contained within a tetrahedron (blue lines) formed by four phenotypic archetypes (blue
dots) identified through ParetoTI. Archetype positions are labelled by molecular group, and tumours are coloured by molecular group membership
(n = 121 Ca A1, n = 107 Ca A2, n = 75 Ca B, n = 16 sc-enriched). Supra-carcinoids are circled in grey (n = 16). sc-e, supra-carcinoid enriched. b,
Proportion per molecular group of each category within four feature groups: type (where “carcinoid” indicates tumours that could not be definitively
classified as typical or atypical), sex (inferred from omics data), age category, and tumour location. Molecular group proportions per category within
a feature group sum to 1. Circled features indicate significant enrichment within group (P value < 0.05, Binomial test). c, Kaplan-Meier plot of
overall survival probability over time in months per molecular group (P value = 0.021, Log-rank test). d, Uniform Manifold Approximation and
Projection (UMAP) of transcriptomes of neuroendocrine neoplasms from multiple organs (n = 641). NET, neuroendocrine tumour. e, Proportion of
variance in gene expression explained by the proposed and existing thoracic tumour classifications, where 0% indicates the classification explains no
difference in gene expression profiles between patients and 100% indicates that all differences between patients are explained by the classification.
The dashed line corresponds to the value expected under a random classification, obtained using permutations of the molecular group labels. LNEC,
lung neuroendocrine carcinoma; SCLC, small cell lung cancer; LCNEC, large cell neuroendocrine carcinoma; LUADC, lung adenocarcinoma; LUSC,
lung squamous cell carcinoma. f, Proportion of samples per molecular group assigned to four immune archetypes. g, Relative abundance of ten
immune cell types, in each molecular group, estimated from RNA-seq data using deconvolution (software quanTIseq). Individual samples are shown
on the x-axis, relative abundances on the y-axis. f-g display lung NET cohort samples for which RNA-seq data were available (n = 273).
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Figure 2. Genomic and transcriptomic profiles of lung NET molecular groups. a, Copy number profile of each molecular group; the y-axis represents
the percentage of samples in each group with a given alteration (amplifications above the 0 line, deletions below), and colours represent the copy
number. The black line represents copy-neutral loss of heterozygosity (cn-LOH). Driver copy number variants (CNVs) detected in each group by the
GISTIC2 method are represented by a square above each profile (red rectangles for deletions, blue rectangles for amplifications). b, Oncoplot of small
and structural variants within driver genes identified by IntOGen, and the presence of at least one small variant or structural variant (SV) in at least
one epigenetic regulatory gene (excluding IntOGen drivers already represented above). Copy number deletion of the region containing MEN1 is also
rerepresented. a-b display samples from the lung NET cohort with WGS data (n = 102). c, Expression heatmap of selected genes (columns) for each
sample of the lung NET cohort (rows, n = 273). Gene expression values are displayed as z-scores of log2(TPM+1) values. Genes are grouped by the
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(red). Coloured bars on the bottom indicate gene membership in super-pathways, described in the legend on the right. Values between brackets next
to the pathways correspond to the number of core upregulated genes (first value), and core pathways (second value), included in the super-pathway.
d, Alluvial plots comparing the proposed four-group molecular classification with other published classifications, determined by marker gene
expression; box sizes correspond to sample sizes in the study cohort, n = 273. e, Confusion matrix of the performance of the immunohistochemistry
(IHC) protein classification for molecular groups, n = 90.
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Figure 3. Morphological features of lung NET molecular groups identified by deep learning. a, Schematic representation of the deep learning
algorithm applied to H&E and H&E/S stained whole-slide images (WSIs). WSIs are divided into smaller regions, referred to as tiles. These tiles are used
to train the Barlow Twins algorithm in a self-supervised manner, aiming to generate similar encoded vectors for tiles with common morphological
features. The encoded vectors are grouped into morphological partitions using the Leiden clustering algorithm. Tile proportions within each Leiden
partition are then used to train random forest models to predict either the tumour histology or the molecular group. A supervised branch, based on
RoFormer-MIL, was subsequently employed to identify the most informative tiles for molecular group classification. RoFormer-MIL processes a
matrix of encoded vectors from Barlow Twins for each WSI and predicts the molecular group by considering all interactions between the vectors.
Attention scores from RoFormer-MIL were used to extract the most relevant tiles, which were clustered using the Leiden algorithm and interpreted
by a panel of expert pathologists (Interpretation branch). To generalise the representation of key features across all tiles, cosine similarity scores
between tile embedding vectors and text-based prompts were computed using the CONCH visual-language foundation model. b, Comparison of
deep learning performance for each classification system, measured by weighted F1 score. c, Confusion matrix of molecular group predictions by
RoFormer-MIL. d, Distribution of median cosine similarity scores per WSI for the text prompts indicated above the figure, by molecular groups
(x-axis). e, Example of how the morphological criteria identified by deep learning could help diagnose patient molecular group. Coloured squares
correspond to high-attention tiles identified by RoFormer-MIL to predict molecular groups. Colours represent different partitions, and barplots
display the number of tiles from the different partitions in these high-attention regions. Example tiles from partitions along with their consensus
pathological annotations from two independent pathologists are also represented, where stars correspond to the significance of the association
between partitions and annotations. * 0.01 < q value < 0.05; ** 0.001 < q value ≤ 0.01; *** q value ≤ 0.001.
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Figure 4. Evolution of lung NET molecular groups. a, Estimated proportion (y-axis) of cell types per sample (x-axis), using deconvolution with a
custom single-cell reference database including a diverse repertoire of neuroendocrine cells. NE: neuroendocrine; LAP, lower airway progenitor. b,
Estimated proportion of terminally differentiated NE cells, club cells, and LAPs in the four molecular groups and lung NECs. a-b display samples
from the lung NET cohort (n = 273) and LCNEC (n = 69) and SCLC (n = 51) for which RNA-seq data is available. Asterisks correspond to significance
assessed by t-tests. c, Spatial transcriptomics of supra-carcinoid samples. From left to right, columns represent: the H&E image, proportion of
lower airway progenitor cell expression profile per spot, proportion of sc-enriched group expression profile per spot, the estimated location and
proportions of macrophages and fibroblasts (scaled so 1 is the maximal value observed in a given sample). d, Silhouette width of intra-tumoural
heterogeneity (ITH) samples, measuring the distance between the sample and its patient reference molecular group (molecular group of the ITH
piece included in lung NET cohort MOFA) (left). Archetype analysis of a heterogeneous multi-regional tumour (LNEN107). Barplots correspond to the
molecular group proportion composition of each region (right). e, Driver to driver trajectories among tumours with identified driver mutations. Arrow
colours correspond to the significance of Fisher’s exact test of the association between pairs of drivers (FDR corrected using the Benjamini-Hochberg
method), arrow size corresponds to the strength of the inferred association, point size to the number of driver events, and point colour indicates the
number of paths leading to a given driver (blue: a single trajectory leads to this driver, brown: multiple trajectories lead to it). GL, germline. * 0.01 < P
value < 0.05; ** 0.001 < P value ≤ 0.01; *** P value ≤ 0.001.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2025. ; https://doi.org/10.1101/2025.07.18.25331556doi: medRxiv preprint 

https://doi.org/10.1101/2025.07.18.25331556
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sexton-Oates et al. | 7

*

***

***

***
P value = 9.4 x10−10, ANOVA

0.0

0.5

1.0

1.5

Ca A1 Ca A2 Ca B sc−enriched

M
K

I6
7 

ex
pr

es
si

on
 [l

og
10

(T
P

M
+

1)
]

P value = 2.21 x10−06, ANOVA

0

10

20

30

40

Ca A1 Ca A2 Ca B sc−enriched

M
ea

n 
K

i−
67

 in
de

x

TPM = 1

P value = 2.4 x10−07, ANOVA

*

0

10

20

Ca A1 Ca A2 Ca B sc−enriched

M
ea

n 
m

ito
tic

 c
ou

nt

c

b

a

Patient LNET10

Molecular profile 

Clinical profile

Patient-derived tumour organoid

BRAF V600E

Protein kinase
domain

Zinc
finger

RBD
domain

Amino acid position

1
-1

0
K

b
1

0
-1

0
0

K
b

1
0

0
K

b
-1

M
b

1
M

b
-1

0
M

b
>

1
0

M
b

1
-1

0
K

b
1

0
-1

0
0

K
b

1
0

0
K

b
-1

M
b

1
M

b
-1

0
M

b
>

1
0

M
b

1
-1

0
K

b
1

0
-1

0
0

K
b

1
0

0
K

b
-1

M
b

1
M

b
-1

0
M

b
>

1
0

M
b

1
-1

0
K

b
1

0
-1

0
0

K
b

1
0

0
K

b
-1

M
b

1
M

b
-1

0
M

b
>

1
0

M
b

1
-1

0
K

b
1

0
-1

0
0

K
b

1
0

0
K

b
-1

M
b

1
M

b
-1

0
M

b
>

1
0

M
b

1
-1

0
K

b
1

0
-1

0
0

K
b

1
0

0
K

b
-1

M
b

1
M

b
-1

0
M

b
>

1
0

M
b

0

200

400

N
u

m
b

e
r 

o
f 

S
V

s

Clustered SVs Non-clustered SVs

Del TD Inv T Del TD Inv T

100% RefSig R4

A2
A1

sc-enriched

B

LNET10T

A1 BA2 sc-enriched

Molecular group
composition (%) 5 1318 64

3

10

30

Primary

PDTO p4

PDTO p11

M
K

I6
7

ex
pr

es
si

on
[lo

g1
0(

T
P

M
+

1)
]

0.3
0.5

1.0
Primary

PDTO p4

other sc-enriched

N
on

sy
no

ny
m

ou
s

m
ut

at
io

ns
/M

b

Female
16-40 years old
Never-smoker
No asbestos exposure

Participant 
ID

Molecular 
group

% Ki-67
(mean IHC)

Mitotic count by pathologist
p1 p2 p3 p4 p5 p6

Mean mitotic 
count

Consensus 
type

LNEN071 sc-enriched 26.83 8 4 13 8 6 4 7.17 Atypical
LNEN073 Ca B 14.83 7 6 14 5 2 3 6.17 Atypical
LNEN086 Ca A2 10.17 5 7 11 5 12 7 7.83 Atypical
LNEN116 Ca B 17 3 3 33 3 3 5 8.33 Atypical

LNEN239 Ca B 11.33 11 13 2 14 3 3 7.67 NET G3
LNEN278s1 sc-enriched 37.67 40 18 15 26 13 14 21 NET G3

grade-2 lung NET
stage IA (T1bN0M0)

2 mitoses/2mm2

Focal necrosis

Diagnosis

Progression 1

Dx of LCNEC

Progression 2

Skin and lymph 
node metastases

Commenced 
BRAFi & MEKi

Bone metastasis

Liver metastasis

Club NE1                             NE early 1

0.00

0.25

0.50

0.75

1.00

lung NET sc-
enriched

P
ro

po
rt

io
n

LNET10T p4 p11 LCNEC

LNET10 PDTO

4

8

12

100 200 300 400 500
Cumulative days 
after isolation

P
as

sa
ge

grade-2
grade-1

LAP NE2

Figure 5. Spotlight on supra-carcinoids. a, Distribution of MKI67 gene expression per molecular group (n = 273, left), distribution of mean Ki-67
index (mean of six pathologist’s readings) per molecular group (n = 196, middle), distribution of mean mitotic count (mean of six pathologist’s
readings) per molecular group (n = 197, right). All pairwise comparisons performed with t-tests. * 0.01 < P value < 0.05; ** 0.001 < P value ≤ 0.01; ***
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Profile of a patient with a supra-carcinoid tumour for which a patient-derived tumour organoid (PDTO) was developed, allowing drug screens. Top
panel, clinical profile and disease course. BRAFi, BRAF inhibitor, MEKi, MEK inhibitor, Dx, diagnosis; LCNEC, large cell neuroendocrine carcinoma.
Middle panel, molecular profile of primary tumour (LNET10T) showing location in archetype space (left), BRAF V600E alteration and shattered region
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Extended Data Figures
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Extended Data Figure 1. Study design overview and additional features of lung NET molecular groups. a, Origin of samples within the lung NET
cohort (n = 319, lungNENomics network or previous publications), and number of samples per histological type by origin (where “carcinoid” indicates
tumours that could not be definitively classified as typical or atypical). Depiction of central pathology review. Distribution of omics data generated, or
publicly available, by sample type for the lung NET cohort. Analysis techniques performed with formalin-fixed paraffin-embedded (FFPE) tissues
from the lungNENomics network series. Figure created, in part, with BioRender.com. b, Data as in Fig. 1a plotted over MOFA Latent Factors 1 and 5. c,
Infiltrating immune cell scores from six estimation methods per molecular group (n = 273). Mean z-scores per molecular group were compared by
t-tests (linear mixed model with methods as random effects). d, Distribution of fibroblasts score z-scores from six estimation methods for each
molecular group (n = 273). Mean z-scores per molecular group were compared by t-tests. *** P value ≤ 0.001.
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number variations, CNVs). b, Copy number profile of the lung NET cohort; the y-axis represents the percentage of samples in each group with a given
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groups. Each tile was independently reviewed by two pathologists, and only tiles where the feature was reported by both pathologists are shown. d,
Robustness analysis of the results presented in Fig. 3c, using alternative prompts. Volcano plots represent the statistical significance (q value, y-axis)
versus the effect size (x-axis) of the differences between molecular groups in terms of cosine similarity between CONCH WSI tile embeddings and
text prompt embeddings, for different prompts (points).
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Extended Data Figure 5. The evolution of lung NET groups. a, Figure design as in Fig. 4c, for samples LNEN071 and LNEN206. b, Ternary plots
depicting the relative position of intra-tumoural heterogeneity (ITH) samples in space between different molecular groups. Black lines join ITH
samples from the same patients. ITH samples are coloured by patient. Patient LNEN107 highlighted as the patient whose ITH samples were assigned
to two different molecular groups. c, Clonality (colour) of driver alterations identified in each molecular group (left), and inferred timing of driver
amplifications in timing relative to the number of mutations in the chromosome segment (0: amplification happened before all mutations, 1:
amplification happened after all mutations, middle), and chronological age (in years, right) scales. WGD, whole-genome doubling. d, Recurrent
evolutionary trajectories based on small variants and CNV drivers detected using the REVOLVER method. Colours represent the driver event, “1st
event” refers to initiating events (trajectories from germline to a driver in Fig. 4e), and “2nd event” refers to subsequent events (trajectories between
two drivers in Fig. 4e). e, Tumour-Immune genomic interactions. Number of neoantigens per molecular group (top left), level of immunoediting,
estimated as the selection coefficient of small variants in neoantigen-rich regions (ratio of non-synonymous to synonymous mutations, dN/dS) by
the SOPRANO method (top right), genetic diversity score (Grantham 1974’s amino acid score using exons 2 and 3) of germline HLA class I alleles in
patients who developed lung NETs of different molecular groups (bottom). Stars represent the significance levels of t-tests. * 0.01 < P value < 0.05.
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