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Abstract

Habitat fragmentation is one of the most immediate and substantial threats to biodiversity,

generating isolated populations with reduced genetic diversity. Genetic monitoring has become

essential for detecting fragmentation and tracking its progress. However, the coherent inter-

pretation of genetic monitoring data and understanding the genetic consequences of fragmen-

tation require frameworks that accurately represent real-world complexity. Existing theoretical

frameworks typically rely on simplified spatial structures and do not adequately capture the

heterogeneous migration patterns of natural populations. Here, we integrate network theory

and mathematical population genetics to develop a framework for studying the genetic con-

sequences of fragmentation processes, explicitly accounting for heterogeneous connectivity and

temporal dynamics. We apply this framework to examine how different fragmentation processes

affect genetic measures commonly used in genetic monitoring. We find that different fragmen-

tation scenarios produce substantially distinct trajectories in key genetic measures, sometimes

exhibiting rapid transitional dynamics, suggesting that the interpretation of genetic monitoring

data must be tailored to ecological contexts. Furthermore, fragmentation can cause deviations

from classical theoretical expectations, such as the expected correlation between genetic and ge-

ographic distance (isolation-by-distance) or between genetic diversity and connectivity. Finally,

we propose and demonstrate detectable early warning signals in genetic monitoring data that

precede rapid transitional phases. Our framework thus provides a practical interpretation of

genetic monitoring data, bridging the gap between idealized theoretical models and real-world

connectivity dynamics.



1 Introduction1

Rapid human-induced environmental changes affect ecological and evolutionary processes, driving2

biodiversity loss [1]. One of the main factors driving these changes is landscape fragmentation,3

the partitioning of landscapes into small and weakly connected habitat patches [2]. Fragmentation4

reduces connectivity among populations, constraining gene flow and dispersal of individuals [3],5

which can negatively impact the health and viability of populations [4–6]. Landscape fragmen-6

tation is expected to erode within-population genetic diversity and increase between-population7

genetic differentiation due to reduced gene flow and increased genetic drift [7, 8]. Decreased genetic8

diversity can, in turn, reduce population viability in the short term by increasing risks of inbreed-9

ing depression [7, 9], while also limiting long-term evolutionary potential and adaptive capacity10

in response to future environmental changes [10, 11]. Consequently, systematically and coher-11

ently tracking fragmentation dynamics and their population-genetic consequences through genetic12

monitoring remains a major goal in conservation biology.13

Genetic monitoring of population genetic metrics over time is a cost-effective and direct approach14

for tracking both the genetic impacts and the underlying ecological processes of fragmentation.15

The alternative, tracking individual movement among habitat patches, is usually resource-intensive16

and offers only an indirect proxy for the genetic and evolutionary consequences of fragmentation.17

Consequently, genetic monitoring of wild populations is widely used to assess population health18

and viability, landscape connectivity, and species responses to environmental disturbances [12–19

14]. However, a major challenge in applying genetic monitoring to track fragmentation lies in the20

interpretation of genetic measures in the context of the ecological process of migration.21

Early theoretical work in population genetics established foundational frameworks for linking22

genetic diversity and differentiation to migration under simplified assumptions about gene flow pat-23

terns and spatial configurations [15–17]. For example, the island model assumes equal and constant24

migration rates without explicit spatial arrangement [15], whereas the stepping-stone model incor-25

porates homogeneous and symmetric migration between adjacent demes arranged on a regular lat-26

tice with an additional long-range migration component [17]. These models provided fundamental27

insights into how spatial connectivity shapes population genetic structure and introduced key con-28

cepts such as isolation-by-distance, where genetic differentiation increases with geographic distance29

[18], and the connectivity-diversity relationship, in which populations that are more connected are30

expected to exhibit higher genetic diversity [19]. However, their simplified assumptions often limit31

their practical applicability for genetic monitoring and evaluating fragmentation impacts [20]. For32

example, one critical limitation of most existing modeling frameworks is their inability to capture33

the temporal dynamics of fragmentation, where landscape degradation and connectivity loss occur34

as heterogeneous, sequential processes shaped by the specific spatial and temporal characteristics35

of anthropogenic or climatic drivers [21]. The lack of a modeling framework that integrates realistic36

spatiotemporal patterns of connectivity and fragmentation thus restricts the practical application37

of population genetic theory in conservation efforts and limits its utility for informing management38
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decisions.39

A promising approach for incorporating realistic gene flow patterns into population genetic40

theory is to represent connectivity between populations as a network—a mathematical construct41

comprising nodes (habitat patches) connected by edges (connectivity) [22]. Population networks42

can accommodate complex connectivity patterns beyond the scope of classical population genetics43

models. Several methods have been developed to infer such networks from genetic data by quanti-44

fying genetic differentiation between population pairs [23–25], with applications across a wide range45

of taxa [23, 26–32]. These network-based approaches provide a rigorous framework for modeling46

realistic fragmentation dynamics, enabling more coherent interpretations of genetic monitoring.47

In this work, to bridge the gap between theory and practice, we develop a framework based48

on population networks, integrating advances in population-genetic theory and network science to49

investigate the spatiotemporal genetic consequences of landscape fragmentation. This framework50

explicitly incorporates real-world complexities within a conceptually simple and tractable model.51

We apply this framework to examine how different fragmentation scenarios affect genetic measures52

and to assess how network structure impacts population resilience under connectivity loss. While53

fragmentation is a multifaceted process involving multiple concurrent stressors (e.g., habitat loss,54

reduced patch size, edge effects), our focus here is on connectivity loss (also termed fragmentation55

per se; [5, 33]). Our approach enables improved interpretation of genetic monitoring data and56

facilitates identification and measurement of fragmentation progression. Additionally, our modeling57

framework can assist in predicting the genetic impacts of connectivity loss and evaluating the genetic58

health of fragmented populations.59

2 Results60

To model the genetic consequences of fragmentation, we consider a metapopulation in which some61

populations are connected by migration. For tractability, we assume equal and symmetric migra-62

tion rates among all connected populations. Any such connectivity pattern can be represented as63

a population network (Fig. 1a). To relate migration patterns to genetic measures, we employ the64

approach developed by Alcala et al. [34], which consists of two transformations: (i) from migra-65

tion matrices to pairwise coalescent-time matrices [35], and (ii) from coalescent-time matrices to66

pairwise genetic differentiation measured by FST [36] (see Methods and Supplementary Information67

Text). This procedure provides, for a given migration matrix, expected pairwise FST between all68

population pairs, as well as genetic diversity measured by expected heterozygosity (He) for each69

population (Fig. 1a). For simplicity, we further assume uniform population sizes and mutation70

rates across all populations, allowing us to use an ‘unscaled’ heterozygosity measure (see Methods);71

therefore, our He values should be interpreted only relatively, and values exceeding one are possible.72

To simulate an ecologically plausible metapopulation, which is usually embedded in a geographic73

landscape, we use a random geometric graph (RGG) model [37] as the initial network. In this model,74

populations are more likely to be connected if they are geographically close to each other. We model75
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a fragmentation process by iteratively removing edges according to one of several predefined frag-76

mentation scenarios (Fig. 1b). After each edge removal, we recompute genetic measures, tracking77

their changes until all edges have been removed and the network has become fully fragmented into78

isolated populations. This modeling framework is highly flexible and enables the study of diverse79

connectivity patterns and fragmentation scenarios while providing rigorous analytical expectations80

for key genetic measures commonly used in genetic monitoring.81

We consider eight fragmentation scenarios (Fig. 1b): (i) random fragmentation, representing82

global environmental changes (e.g., climate change); (ii) autocorrelated fragmentation, representing83

spatially correlated landscape disturbances (e.g., agricultural expansion); (iii) intrusive fragmenta-84

tion, representing the emergence of isolated habitats within the landscape; (iv) regressive fragmen-85

Figure 1: Schematic representation of the network-based framework for modeling population
genetic effects of fragmentation. (a) Computation of genetic measures along fragmentation. In the top
row, populations (yellow/brown patches) are embedded in a landscape (green) undergoing fragmentation.
Below, the metapopulation is represented as a network with nodes (blue) denoting populations and edges
representing migration between populations. Fragmentation is simulated by iteratively removing edges (red).
A coalescence matrix is derived from each network, which enables the calculation of genetic diversity and
differentiation at each fragmentation step (grey box). These metrics allow monitoring of population genetic
changes over time (right side of the grey box). Color intensity of nodes represents network properties
associated with genetic measures. (b) Modeling fragmentation processes. Illustrated are eight fragmentation
scenarios applied to a single realization of a random geometric graph (RGG). Edges removed under each
scenario are shown in red. Further details of each scenario are provided in the text.
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tation, representing the expansion of a disturbance into a natural landscape (e.g., urban expansion);86

(v) distance-based fragmentation, representing reduced dispersal ability through a non-habitable87

matrix (e.g., disturbances hindering dispersal through the matrix, reducing dispersal distances);88

(vi) divisive fragmentation, representing linear destruction of connectivity (e.g., road or railway89

construction); (vii) best-case fragmentation, an idealized scenario that sequentially removes the90

least important edges, thus maximizing connectivity at each step; and (viii) worst-case fragmen-91

tation, similar to the best-case scenario, except the most important edge is removed at each step.92

The last two scenarios are theoretical constructs intended to establish upper and lower bounds for93

genetic measures rather than to depict realistic fragmentation processes. Detailed descriptions of94

each fragmentation scenario are provided in Methods.95

2.1 Genetic monitoring measures strongly depend on the fragmentation sce-96

nario97

Across all fragmentation scenarios, we observe an increase in genetic differentiation and a decrease98

in genetic diversity as fragmentation progresses (Fig. 2). However, the rate and pattern of these99

changes vary substantially among scenarios. The slowest erosion of genetic diversity and the most100

gradual increase in genetic differentiation were observed under the best-case scenario (pink curve101

in Fig. 2), as expected. In contrast, the worst-case scenario exhibited the most rapid erosion of102

genetic diversity and the steepest increase in differentiation (grey curve in Fig. 2). Thus, these103

two theoretical extremes provide upper and lower bounds for the retention of genetic health in the104

metapopulation, against which other fragmentation scenarios can be compared.105

In the random and autocorrelated scenarios, the loss of diversity and increase in differentiation106

are almost undetectable in the early stages of fragmentation but then become substantial at ∼ 60%107

fragmentation. This pattern is reflected in concave curves for genetic diversity and convex curves108

for differentiation (blue and orange curves in Fig. 2). The distance-based scenario (purple curve in109

Figure 2: Changes in genetic measures along fragmentation under eight fragmentation scenarios.
(a) Mean genetic diversity (He) across all populations along fragmentation. (b) Mean genetic differentiation
(pairwise FST ) among all population pairs. Lines denote means across 100 simulation replicates, with shaded
regions indicating standard deviations. Fragmentation is measured as the fraction of edges removed from
the initial network.
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Fig. 2) shows a similar trend, but the loss of genetic diversity begins earlier in the fragmentation110

process and progresses faster than in the random and autocorrelated scenarios. In contrast, in the111

regressive and divisive scenarios, the curvature patterns are reversed: the genetic diversity curve is112

convex, with rapid and substantial decreases in genetic diversity early in the fragmentation process,113

and the genetic differentiation curve is concave, indicating earlier deterioration of metapopulation114

genetic health compared to the other scenarios. For example, in the divisive scenario, a > 50%115

change in genetic measures occurs already by 25% of the fragmentation process (brown curve116

in Fig. 2). In the intrusive scenario, both genetic measures change approximately linearly as117

fragmentation progresses (green curve in Fig. 2).118

To understand the robustness of these patterns, we also examined how FST and He measures119

change along fragmentation under different migration rates and initial network topologies (Figs. S1120

and S2). Overall, the patterns remain similar across different migration rates, except at low mi-121

gration rates, where the absolute values of FST are higher in the early stages of fragmentation122

(Fig. S1b). Similarly, the results remained consistent when the initial network topologies were123

generated using either the Erdős-Rényi model or a small-world network model instead of the RGG124

model (Fig. S2). However, the differences among fragmentation scenarios were less pronounced in125

these analyses, highlighting the importance of considering spatially explicit network models, such126

as the RGG model.127

Overall, our results demonstrate that, for a given level of connectivity loss, the risk of inbreeding128

depression and the reductions in both evolutionary potential and between-population differentia-129

tion strongly depend on the type of fragmentation process experienced by the metapopulation.130

Therefore, the interpretation of genetic monitoring data must account for the context and drivers131

of fragmentation. For example, a 10% decrease in He might reflect gradual connectivity decline un-132

der intrusive fragmentation, whereas the same decrease under random fragmentation could indicate133

dramatic habitat deterioration.134

2.2 Relationship between heterozygosity and network components135

When considering the distributions of the genetic measures rather than just their means, we observe136

that He distributions remain largely unimodal throughout the fragmentation process, with a shift137

towards He = 0 occurring as isolated nodes accumulate (Figs. 3a–c and S4a–e). Similarly, the138

FST distributions exhibit increasing bimodality, with density accumulating at FST = 1 as more139

nodes are separated into different components (Figs. 3d–f and S4f–j). Changes in the shape of140

these distributions along fragmentation are also reflected in the variance of genetic diversity across141

populations (Fig. 3g): the level of fragmentation that maximizes variance, as well as the maximum142

variance value, differs among fragmentation scenarios. The increase in He variance can make143

the detection of fragmentation—and genetic health in general—more challenging at intermediate144

fragmentation levels because more populations will need to be sampled to correctly characterize145

the genetic diversity state of the metapopulation.146
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Figure 3: Changes in the distributions of genetic measures along fragmentation. Panels (a–f) show
density distributions for three fragmentation scenarios: random, distance-based, and regressive (additional
fragmentation scenarios are shown in Fig. S4). Four snapshots from the process are shown: 0%, 25%, 50%,
and 75% fragmentation. Diagonal lines on bars indicate truncated values (for He = 0 or FST = 1). All
distributions are pooled from 100 simulation replicates. (a–c) Distribution of expected heterozygosity (He)
of populations. (d–f) Distribution of pairwise FST across all population pairs. (g) Change in the variance
of He across all populations in the network. (h) Relationship between the fraction of nodes in the largest
component and mean He across all populations in each network. For each scenario, dots denote the means
across 100 simulation replicates, and lines denote the standard deviations.

As fragmentation progresses, network structure changes and populations begin to disconnect147

from the main component (Fig. S3). For example, the rapid deterioration in genetic health under148

the divisive scenario (brown in Fig. 2) can be attributed to the early emergence of medium and149

small network components, which reduce genetic diversity and increase between-component differ-150

entiation (Fig. S3f). To better understand the effect of component structure on genetic diversity,151

we tracked the size of the largest component throughout the fragmentation process (Fig. 3h). We152

observe a strong correlation between the size of the largest component and the mean He across153

populations in the network (r = 0.97–0.98 across scenarios, p-value < 0.001). This correlation is154

relatively consistent across different fragmentation scenarios, indicating that the size of the largest155

component is an important determinant of genetic diversity.156
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This result can be interpreted in relation to the theoretical relationship between effective pop-157

ulation size and heterozygosity, He =
4Nµ

1+4Nµ [38]. Because we consider a small effective population158

size relative to the mutation rate (i.e., θ = 4Nµ ≪ 1), we expect an approximately linear rela-159

tionship of He ≈ 4Nµ. The result in Fig. 3h is similar to what one would expect if we treated160

each component as a well-mixed population. However, the relationship between He and component161

size is sublinear, reflecting the fact that components are not well-mixed and should therefore be162

represented with effective sizes smaller than their actual sizes.163

2.3 Using network metrics in genetic monitoring164

To better understand how tracking network characteristics can inform genetic monitoring, we eval-165

uated the association between genetic measures and commonly used network metrics. We first166

examined the relationship between a population’s genetic diversity and its centrality. There are167

different ways to measure network centrality [39], each of which can be interpreted differently with168

respect to population genetic processes [22]. Here, we evaluated two common metrics: degree169

centrality (i.e., the number of edges incident to a node), which measures local centrality, and be-170

tweenness centrality (i.e., the frequency with which a node lies on shortest paths between other171

nodes), which measures global centrality. Under classical population genetics theory, populations172

with higher connectivity should exhibit greater genetic diversity due to increased gene flow, leading173

to higher He at migration-drift equilibrium [19]. Consistent with this expectation, analysis of the174

initial (pre-fragmentation) networks showed a strong positive correlation between degree centrality175

and He (r = 0.71–0.95, Fig. 4a). However, because all populations had a relatively high He, this176

relationship was nonlinear, exhibiting a saturating effect: while He increased with degree at low177

connectivity, it plateaued for highly connected nodes (Fig. S5a). Hence, local connectivity increases178

genetic diversity only up to a threshold, beyond which additional migration corridors do not sig-179

nificantly contribute to maintaining genetic diversity. In contrast, the association between He and180

betweenness centrality was weaker for nodes with low betweenness (Fig. S5b).181

Throughout fragmentation, the correlation between He and degree centrality remains consis-182

tently high for some scenarios but declines rapidly early in the fragmentation process under the183

worst-case, divisive, and distance-based scenarios (Fig. 4a). This decline may result from network184

partitioning into components of varying size in these fragmentation scenarios, where component185

size has a stronger effect on He than does local connectivity. For example, a densely connected186

population in a small component with few populations may have lower He than a sparsely con-187

nected population in a larger component with many populations. Thus, component size, rather188

than degree centrality, is a primary determinant of genetic diversity at these intermediate frag-189

mentation stages. Interestingly, in these scenarios, the correlation later rebounds, converging to190

levels similar to those of the other fragmentation scenarios. This suggests that once components191

reach comparatively small sizes, within-component degree centrality once again becomes a strong192

determinant of He.193
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Figure 4: Correlation between population genetic measures and network metrics. The Pearson
correlation coefficient r was computed between genetic diversity (He) and network centrality (panels a–b),
or between genetic differentiation (FST ) and distance metrics (panels c–f), for eight fragmentation scenarios.
(a) Correlation between a population’s He and its degree centrality (number of connected edges). (b) Cor-
relation between a population’s He and its betweenness centrality (global centrality metric). (c) Schematic
illustration of three different distance metrics for a pair of populations (red nodes). (d) Correlation between
the FST of a pair of populations and their Euclidean distance in the two-dimensional space in which the
RGG network is embedded. (e) Correlation between the FST of a pair of populations and their shortest-path
network distance. (f) Correlation between the FST of a pair of populations and their random-walk network
distance.

The association between genetic diversity and betweenness centrality was generally weaker than194

that for degree centrality, with less variation among fragmentation scenarios (Fig. 4b). This suggests195

that populations do not necessarily need to occupy a key gene flow hub to maintain high genetic196

diversity, as has been observed in some systems [40]. One implication of this is that peripheral197

populations in large, well-connected networks can maintain genetic diversity comparable to that of198

central populations in smaller, less connected components.199

Next, we examined the relationship between pairwise FST and three network distance met-200

rics relevant for genetic monitoring (Fig. 4c): (i) Euclidean distance in the two-dimensional space201
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of the embedded RGG network, (ii) shortest-path distance (the minimum number of edges re-202

quired to connect a pair of nodes), and (iii) random-walk distance (the expected number of edges203

traversed in a random walk between two nodes). Euclidean distance represents the geographic204

distance, whereas estimating the network distances requires knowledge of migration or movement205

patterns in the metapopulation [22]. Prior to fragmentation, we observed strong correlations be-206

tween FST and all three distance metrics (r = 0.7–0.75, Fig. 4d–f), indicating that geographically207

distant populations are more genetically differentiated irrespective of how distance is measured.208

This finding aligns with the isolation-by-distance expectation derived from stepping-stone [17] and209

continuous-space [41] models, suggesting that such idealized models are a good approximation for210

sufficiently well-connected networks [22]. However, as fragmentation progresses, these correlations211

vary substantially both over the course of fragmentation and among scenarios (Fig. 4d–f).212

For Euclidean distance, the correlation declines under most fragmentation scenarios, particularly213

under the worst-case, divisive, best-case, and autocorrelated scenarios (Fig. 4d). Interestingly,214

these processes differ substantially in their network structure during fragmentation, particularly215

in the size of the largest connected component (Fig. S3), indicating that additional topological216

properties are needed to account for the relationship between genetic differentiation and geographic217

distance. In contrast, for shortest-path distance, the correlation consistently increases across most218

processes we examined (the theoretical best-case scenario is the exception) and generally shows the219

strongest association between FST and distance (Fig. 4e). This suggests that this network metric is220

particularly suited for genetic monitoring, either as a non-genetic proxy for genetic differentiation or221

as a proxy for connectivity from pairwise FST data. For the random-walk distance, the relationship222

remains relatively stable throughout fragmentation for most scenarios, except for a decline in the223

worst-case and divisive scenarios (Fig. 4f).224

Overall, these analyses highlight that the topological properties of population networks can225

inform the tracking of genetic diversity and differentiation patterns. However, relating genetic226

measures to network properties such as components, centrality, or distance measures should, in227

most cases, be done in the context of the fragmentation scenario. Classical population genetic228

relationships—such as those between gene flow and diversity or distance and differentiation—are229

useful for well-connected populations but may diverge from classical theory when fragmentation230

processes shape the topology of metapopulation connectivity.231

2.4 Early warning signals in genetic monitoring232

The goal of genetic monitoring is to track the genetic health of populations and to infer under-233

lying ecological processes. However, our findings suggest that inferring fragmentation solely from234

genetic metrics can be challenging because substantial shifts in genetic measures often occur only235

in the later stages of fragmentation under certain fragmentation scenarios. In such cases, once236

genetic diversity declines and population differentiation increases, the transition is both rapid and237

pronounced (Fig. 2). This transition can be considered a tipping-point phase, before which it is238
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difficult to detect ongoing fragmentation by tracking the means of He and FST . This raises the239

question: Can genetic monitoring data detect landscape fragmentation early enough—before the240

population transitions to a highly fragmented and diversity-depleted state? In other words, if we241

are tracking genetic measures in a metapopulation that is progressively undergoing fragmentation,242

can we use genetic data to provide an early warning signal prior to the tipping-point phase during243

which genetic diversity and differentiation dramatically change? To address this question, we eval-244

uated whether early warning signals can be extracted from genetic diversity measures, borrowing245

methods from complex systems theory [42, 43]. Our analysis provides proof-of-concept for the246

potential to integrate early warning methodologies into genetic monitoring frameworks.247

For this demonstrative analysis, we focused on the genetic diversity under the autocorrelated248

fragmentation scenario, where edges are removed in a spatially coordinated manner. We first con-249

sidered a genetic monitoring scheme that tracks the He distributions of all populations throughout250

fragmentation (Fig. 5a). At each time step, we analyzed the distribution of He across populations251

and computed several summary statistics—standard deviation, skewness, and kurtosis—which have252

been found to be reliable early warning indicators in other disciplines [44, 45]. Another common253

statistic, lag-1 autocorrelation, was not used because it is intended to measure stability around254

a single equilibrium [44, 46], which did not hold in our simulations. As the metapopulation ap-255

proaches the tipping-point phase, the theoretical expectation is that the standard deviation of the256

He distribution will increase, the skewness will shift toward the new state (in this case, asymmetry257

towards lower He values), and the kurtosis will increase due to an increased frequency of extreme258

values [43, 45]. To evaluate this, we computed these summary statistics throughout fragmenta-259

tion (green curves in Fig. 5b–d) and examined whether they show substantial changes prior to the260

tipping-point phase (the sharp drop in the orange curves at ∼ 80–90% fragmentation in Fig. 5b–d).261

Some early warning signals prior to the tipping-point phase were clearly observable in our262

analyses (Fig. 5b–d). For example, the standard deviation of the distribution of He across the263

metapopulation increases steadily as fragmentation progresses, and substantial changes in this264

statistic are observable at the early stages of fragmentation even when changes in the mean are not265

yet detected (Fig. 5b). Thus, by tracking the standard deviation among populations over time, a266

noticeable change in this summary statistic could be identified and used as an early warning signal267

before the tipping-point phase. The mean skewness and kurtosis also showed early changes that268

can serve as early warning signals (Fig. 5c–d). However, the trajectories of skewness and kurtosis269

fluctuated over time and were noisier than the standard deviation, suggesting that they are less270

reliable as early warning indicators. This means that, while tracking the mean metapopulation271

He would not indicate that a rapid reduction in genetic health is approaching, monitoring higher272

moments could potentially provide an early indication of genetic deterioration.273

We also considered a more limited monitoring scenario, where He is monitored for a single274

population (Fig. 5e). In this setting, a single population is tracked over time, and we evaluate the275

He distribution of 25% sliding temporal windows throughout fragmentation. As with the previous276

scenario, we tracked changes in the summary statistics of the distributions along fragmentation.277
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Figure 5: Early warning signals before tipping point in genetic monitoring. The analysis examines
fragmentation under the autocorrelated scenario (Fig. 1b). (a) Schematic of the metapopulation-monitoring
approach. At each time step, we analyze the He distribution of all connected populations in the network
(largest component). The tipping-point phase, during which genetic diversity dramatically declines, is de-
noted in red. Genetic diversity distributions closer to the tipping-point phase may differ, with summary
statistics potentially providing early warning. (b–d) Mean metapopulation heterozygosity (orange) and
three early warning statistics (green: SD in (b), skewness in (c), and kurtosis in (d)) along fragmentation.
Solid lines show the mean across 1000 simulation replicates, shaded areas show the standard deviation, and
thin lines show ten individual replicates. (e) Schematic of the single-population monitoring approach. The
He of a single population is tracked with a sliding window; the He distributions in each window are then
analyzed. The tipping-point phase is shown in red. As above, the genetic diversity distributions in windows
closer to the tipping-point phase may differ, with summary statistics potentially providing an early warn-
ing. (f–h) Mean metapopulation heterozygosity (orange) and three early warning statistics computed from
25% of the data per window (green: SD in (f), skewness in (g), and kurtosis in (h)). Solid lines show the
mean across 1000 simulation replicates, shaded areas show the standard deviation, and thin lines show ten
individual replicates.
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Unlike the scenario that tracks the entire metapopulation, here we were not able to identify substan-278

tial early warning signals (Fig. 5f–h). While the standard deviation did increase as fragmentation279

progressed, the change was not substantial prior to the tipping-point phase (Fig. 5f). Although280

no directional change in kurtosis was observed, skewness showed a moderate early increase, which281

could potentially provide some early warning (Fig. 5g, h). Taken together, our analyses indicate282

that under the simulation settings examined, cross-sectional monitoring of multiple populations283

at each sampling occasion yields earlier and more reliable early warning signals than tracking a284

single population through time, even when the latter is summarized over an extended temporal285

window. The likely reason is that the cross-sectional snapshot includes multiple quasi-independent286

observations per time step, whereas the sliding-window yields serially autocorrelated records.287

3 Discussion288

Habitat fragmentation is one of the most pressing threats to global biodiversity [2, 47], and genetic289

monitoring could be instrumental in tracking and managing it. However, developing monitoring290

and intervention strategies that take into account the real-world complexities of population struc-291

ture remains a challenge [48, 49]. We present a framework that enables the modeling of habitat292

fragmentation and its impacts on population genetic measures, thereby expanding the potential293

scope of genetic monitoring. Using this framework, we model complex connectivity patterns and294

simulate temporal dynamics and spatially heterogeneous fragmentation processes. We examined295

the effects of different fragmentation scenarios on genetic measures and found that the same rate of296

fragmentation can lead to markedly different patterns of genetic differentiation between populations297

(FST ) and levels of genetic diversity within populations (He). In this network-based perspective298

of fragmentation, we also find that classical population genetic relationships, such as the asso-299

ciation between FST and geographical distance or between gene flow and local genetic diversity,300

may not always hold. Network topology metrics can help interpret these associations. Finally, we301

demonstrate how genetic monitoring can potentially be used to detect early warning signals before302

fragmentation triggers critical shifts in the genetic health of populations.303

The population network framework presented here can be applied to study many ecological304

processes that affect connectivity. Nonetheless, it is especially relevant in the context of genetic305

monitoring because it can inform how genetic measures in populations change over time [50].306

Human activity can induce fragmentation in different ways, but theoretical investigations of frag-307

mentation dynamics and their potential consequences have thus far been limited [21, 51]. Our308

results underscore the importance of considering the sequence of events leading to fragmentation309

for accurate evaluation of its progression. While we observe steady rates of genetic changes that310

are consistent with theory in some cases [52, 53], we also find scenarios in which genetic measures311

change abruptly (Fig. 2).312

An important factor in shaping the temporal change in genetic measures is the maximum num-313

ber of connected populations in the network (i.e., the size of the largest component; Fig. 3h).314
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For example, scenarios in which a large component is maintained for a longer period (best-case,315

random, autocorrelated; Fig. S3) maintain the genetic health of populations longer (Fig. 2). This316

pattern holds even when populations within components are weakly or indirectly connected. From317

a landscape management perspective, it implies that enhancing connectivity between network mod-318

ules (i.e., clusters of connected populations) may be more beneficial for maintaining high levels of319

genetic diversity than increasing direct connectivity within a weakly connected module. This result320

is consistent with the expectation that larger populations (or metapopulations) will exhibit higher321

genetic diversity due to increased gene flow and decreased genetic drift at the global scale [38].322

However, increasing global connectivity can lead to homogenization of genetic pools and loss of323

local adaptations [54, 55]. Therefore, considering the spatial scale at which connectivity between324

populations is measured is crucial for accurately interpreting genetic monitoring outputs.325

Populations and ecological systems facing environmental changes can undergo dramatic, unex-326

pected, and often irreversible transitions. In the context of tracking biodiversity, several studies327

have introduced the concept of fragmentation thresholds that lead to regime shifts in biodiversity328

[56–58]. However, regime shifts in terms of genetic health and population-level metrics have re-329

ceived far less attention and have been considered primarily in the context of adaptive evolution in330

response to stress [59]. Consequently, genetic monitoring of populations is often reduced to qualita-331

tive assessments. We demonstrated that genetic indicators may appear constant during substantial332

periods of fragmentation, followed by rapid shifts in genetic metrics (e.g., random or autocorrelated333

fragmentation in Fig. 2). This suggests that a standard interpretation of genetic monitoring—no334

genetic change over time implies no underlying fragmentation process—can be misleading. As a335

proof-of-concept, we showed that early warning signals may be detectable by tracking features of336

the distributions of genetic monitoring data. This is particularly true if a large number of popula-337

tions in the metapopulation are monitored. Although there is a substantial body of theoretical and338

statistical literature on early warning signals [42, 43, 46, 60], to the best of our knowledge, no theo-339

retical or empirical studies have explored the integration of these methods with population-genetic340

data so far. Further investigation, applying a more comprehensive suite of early warning methods341

(e.g., Kendall’s τ statistic, conditional heteroskedasticity) to empirical data, may shed additional342

light on the effectiveness of this approach.343

Patterns of spatial genetic structure have been extensively studied for almost a century, both344

in theoretical population genetic models [17, 18, 35, 61] and in empirical studies of natural pop-345

ulations [62–64]. One prevailing view is that spatial separation generates isolation-by-distance346

patterns reflected in genetic differentiation measures [17, 18, 65]. However, we find that these pat-347

terns may deviate from classical expectations depending on the underlying fragmentation scenario348

and the distance metric used (Fig. 4c–f). Similarly, the relationship between genetic diversity and349

connectivity [66–68], a key guideline in conservation practices [69], can also weaken during fragmen-350

tation (Fig. 4a–b). These findings highlight the need to integrate complex spatial configurations of351

populations and realistic descriptions of ecological processes into population genetic studies.352

Although our framework is flexible and allows detailed spatial configurations, we assumed con-353
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stant population sizes and symmetric continuous migration rates, and we did not incorporate354

extinction-colonization dynamics. While our sensitivity analyses suggest that the way different355

fragmentation scenarios affect genetic measures is relatively general and not strongly affected by356

the initial network structure or migration rates, other ecological features may have important im-357

pacts. Our main goal, therefore, is to provide qualitative understanding of how genetic monitoring358

data should be interpreted, rather than to offer precise ways to represent realistic population dy-359

namics. One important assumption in our model relates to the time required for a system to reach360

migration-drift equilibrium between fragmentation steps. When the rate of fragmentation is sub-361

stantially faster than the rate of approach to equilibrium, our framework may not be appropriate.362

It has been suggested that genetic differentiation may respond more rapidly than heterozygosity363

to changes in migration [52] and reach equilibrium faster [70, 71]; therefore, in some cases, the364

framework may be suitable for tracking genetic differentiation but not genetic diversity.365

As non-invasive population-genomic data become increasingly accessible, genetic monitoring is366

expected to emerge as a leading tool in conservation biology for assessing the health, ecology, and be-367

havior of natural animal and plant populations. However, the gap between theoretical expectations368

and practical challenges in conservation biology currently limits our ability to accurately interpret369

genetic data and develop landscape-specific and species-specific conservation strategies. Our frame-370

work incorporates the real-world complexities of space and time and is readily interpretable in terms371

of genetic monitoring. Here, we explored an important aspect of fragmentation—the processes and372

patterns by which between-population connectivity is lost—but our framework can be readily ex-373

panded to investigate other anthropogenic effects, such as habitat loss (e.g., by simulating different374

node-removal processes) or the utility of interventions (e.g., prioritization of ecological corridors).375

Our network-based framework thus serves to narrow the gap between theoretical insights and the376

complex ecological realities of conservation biology.377

4 Methods378

All analyses were performed using Python 3.11.1, except where stated otherwise.379

4.1 Computing genetic measures in population networks380

To compute genetic measures for population networks, we employed the framework developed by381

Alcala et al. [34], which integrates the mathematical relationship between migration and coales-382

cence times by Wilkinson-Herbots [35] with the relationship between coalescent times and FST383

by Slatkin [36]. Our method relies on transformations among three matrices: (i) the migration384

matrix describing the pairwise migration rates, (ii) the coalescence matrix describing the expected385

time to coalesce for two lineages within or between populations, and (iii) the FST matrix describ-386

ing the pairwise genetic distance between populations. A full explanation of the derivations and387

computations is presented in the Supplementary Information Text.388

We considered an idealized system of K populations of equal size, evolving under the neutral389
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Wright-Fisher model at migration-drift equilibrium [19]. Let mij denote the backward migration390

rate from population i to j, representing the probability that a lineage in i originated in j in the391

previous generation. We assumed symmetric migration (mij = mji for all i and j) to ensure con-392

servative migration [35], where total incoming and outgoing migration balance in each population:393 ∑
j ̸=iMij =

∑
j ̸=iMji. While conservative migration is a weaker assumption than symmetric mi-394

gration, we imposed symmetric migration for tractability. Under these assumptions, the migration395

structure of the populations is represented as a symmetric, undirected network M of K nodes396

with zero-diagonal entries. For a pair of nodes i and j (i ̸= j), the weight assigned to the edge is397

Mij = 4Nmij , representing the expected number of migrants from i to j per generation, with N398

denoting the population size of each of the nodes. We simulated population networks with K = 50399

nodes, where migration rates are uniform across all edges (Mij = 1 in the main text, and alternative400

migration rates in Fig. S1).401

4.2 Simulating fragmentation processes in population networks402

Because natural populations are embedded in a geographic space, we used spatial network models403

[72], in which nodes correspond to populations with assigned geographic coordinates. We primarily404

used the random geometric graph (RGG) model [37], one of the simplest and most widely studied405

spatial network models, to generate the initial network in our simulations (see Fig. S2 for alternative406

network models). In this model, K populations are placed uniformly at random in a unit square in407

Euclidean space, and an edge is formed between two nodes if their Euclidean distance is below a408

fixed threshold d. The RGG model is particularly well-suited for representing migration in spatially409

structured populations because it captures the ecologically realistic constraint that migration occurs410

only between sufficiently proximate populations. The connectivity threshold for two-dimensional411

RGG networks (i.e., the value of d above which the network is almost surely connected) is
√

logK
πK412

[73], which equals d = 0.16 for K = 50. We therefore set d = 0.30, which consistently generates a413

connected network that is not too dense yet sufficiently above the threshold at which the network414

is close to being disconnected.415

To model the fragmentation process, we sequentially remove edges from the initial network, one416

at a time, until no edges remain. We consider eight fragmentation scenarios (Fig. 1). (i) Random417

fragmentation. At each fragmentation step, an edge is removed uniformly at random, representing418

non-specific habitat deterioration, such as fragmentation induced by global climate change. (ii)419

Autocorrelated fragmentation. Initially, one random edge is removed. At each subsequent step, one420

edge is removed uniformly at random from the set of edges adjacent to the previously removed edge421

(i.e., edges sharing a node with the last removed edge). This process models spatially correlated422

landscape disturbances, such as urban or agricultural expansions. (iii) Intrusive fragmentation.423

A node is selected uniformly at random, and all its incident edges are removed in random order.424

Once these edges are removed, another node is chosen randomly, its incident edges are removed, and425

the process is repeated. This process generates isolated habitable “islands” within the landscape,426

representing, for example, the formation of micro-reserves—small, disconnected populations. (iv)427
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Regressive fragmentation. Edges are sorted by the minimum x-coordinate of their incident nodes in428

the Euclidean plane and removed progressively from low to high x-coordinate values, starting with429

the edge having the smallest x-coordinate. This process represents large-scale spatial disturbances430

moving across the habitat, such as shifts in climate-change fronts. (v) Distance-based fragmentation.431

At each step, the edge connecting the most distant populations in the underlying Euclidean space is432

removed. This process represents a general environmental deterioration that impedes long-distance433

dispersal among habitat patches. (vi) Divisive fragmentation. A line is drawn in the Euclidean plane434

by connecting two points on different boundaries (either opposing or neighboring boundaries) of the435

metric space (selected uniformly at random), effectively bisecting the habitat. All edges intersecting436

this line are sequentially removed, starting with those having the smallest x-coordinate (as defined437

in (iv)). This process models the introduction of linear barriers, such as roads or railways, into438

the landscape. (vii) Best-case fragmentation. At each step, the edge with the lowest betweenness439

centrality is removed. Betweenness centrality was computed with the NetworkX Python library.440

Because such edges contribute minimally to network connectivity, removing them is expected to441

have the least impact on genetic measures. Although this scenario is not realistic, it serves as an442

upper benchmark for evaluating genetic measures at a given level of fragmentation. (viii) Worst-443

case fragmentation. Similar to best-case fragmentation, but at each step, the edge with the highest444

betweenness centrality is removed. This process provides a lower benchmark for genetic measures445

at a given level of fragmentation.446

These eight fragmentation processes do not exhaustively cover all possible scenarios, but rather447

describe typical ecological and anthropogenic disturbance patterns relevant to genetic monitoring448

[21, 74]. Because these processes are stochastic, we performed 100 independent replicates per449

fragmentation type, randomizing the initial network configuration and the fragmentation sequence450

in each replicate.451

In each simulation replicate, we computed the changes in FST and He distributions in response452

to fragmentation, assuming migration-drift equilibrium is reached between successive iterations453

of edge removal. Each replicate generates a sequence of migration matrices M0, . . . ,Mx, with x454

being the last fragmentation step. From these migration matrices, we computed corresponding455

FST matrices F0, . . . , Fx and He vectors H0, . . . ,Hx. These sequences reflect the changes in genetic456

differentiation and genetic diversity throughout fragmentation. Using these sequences, we tracked457

changes in the means (Fig. 2), sample variances (Fig. 3g) and distributions (Fig. 3a–f) of the genetic458

measures along fragmentation.459

We also evaluated changes in network structure throughout fragmentation by tracking for four460

structural categories: (i) largest component, (ii) other components with > 3 populations (medium461

components), (iii) components of 2–3 populations (pairs/triads), and (iv) isolated nodes. At each462

time step, we computed the mean proportion of nodes in each category across simulation replicates.463

To account for alternative patterns of gene flow in our initial network, and to evaluate their464

effect on our main conclusions, we considered two additional models. (i) The Erdős–Rényi (ER)465

16



random network [75], in which, for K populations, each pair of populations is connected by an466

edge with probability p. To generate a well- but not fully-connected initial network, we set p = 0.1467

(125 edges in total). To allow spatially explicit analysis that can be compared to the RGG, we468

embedded this model in Euclidean space, with nodes placed uniformly at random. (ii) The small-469

world Watts–Strogatz (WS) network is constructed by connecting each population (node) to its k470

nearest neighbors in a ring topology, and then rewiring each edge with probability p to connect to a471

randomly chosen population (node), introducing long-range connections while preserving the total472

number of edges. The WS network can represent species with a life history of many short-distance473

dispersal events and an occasional long-distance dispersal event. We use a modified variant of this474

model to incorporate spatial characteristics to the network [76, 77]. We use the grid graph function475

in the Python library NetworkX to generate a two-dimensional network with n nodes, setting k = 4476

(4 neighbors for each node), and a re-wiring probability of p. This setting converges to the stepping477

stone model [17] for p = 0. For our simulations, we set n = 49 (a 7× 7 matrix).478

4.3 Correlations between genetic measures and node attributes479

To investigate how network metrics influence genetic monitoring along fragmentation, we examined480

the relationship between genetic measures and network metrics. For each network at each frag-481

mentation step, we computed two node centrality measures, degree centrality (number of incident482

edges for the focal node) and betweenness centrality (how often a node lies on the shortest paths483

between other pairs of nodes), for all nodes in the network. We then computed the Pearson corre-484

lation coefficient (r) between node’s He and their centrality score, at each fragmentation step and485

for each centrality measure (we excluded isolated nodes, for which centrality is undefined). Then,486

we computed the mean r and its SD for each fragmentation step across the simulation replicates,487

for each one of the centrality metrics and each fragmentation scenario. We only show significant488

correlation results (p < 0.05) with data from 5 or more replicates.489

Similarly, we evaluated the relationships between network distance metrics and pairwise FST .490

We computed the distance between all pairs of nodes in each fragmentation step using three distance491

metrics: (i) Euclidean distance, the standard geometric measure in the embedded metric space,492

analogous to the typical geographic distances among populations; (ii) shortest-path distance [78],493

calculated as the minimum number of edges needed to traverse from one node to another, reflecting494

topology-aware movement; (iii) random-walk distance [79], defined as the mean number of edges495

a random walker requires to travel from one node to another, which is suitable for movement496

that is unaware of the network topology or a non-targeted movement [22]. Random-walk distance497

was estimated using 50 random-walk iterations per pairwise comparison. The correlations were498

calculated only within connected components of size > 3, and pairs of nodes in disconnected499

components were excluded from correlation calculations (these pairs have FST = 1 and are infinitely500

distant from each other for shortest-path and random walk distance). We computed the Pearson501

correlation coefficient (r) between the FST of all node pairs and their distance score, at each502

fragmentation step and for each distance metric. We used the mantel python library to perform503
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a Mantel test and calculate a corresponding p-value with 999 permutations. For networks with504

multiple components, and hence multiple r and p-values, we calculated the weighted mean r and505

p based on the component size. We then computed the mean r and its SD for each fragmentation506

step across the simulation replicates, for each one of the distance metrics and each fragmentation507

scenario. We only show significant correlation results (p < 0.05) with data from 5 or more replicates.508

4.4 Detecting early warning signals before population collapse509

To identify early warning signals, we computed several summary statistics of the genetic diversity510

(He) distributions that are commonly used as early warning signals: standard deviation, skewness,511

and kurtosis. As the process approaches the tipping-point phase, the theoretical expectation is512

that the standard deviation of the He distribution will increase, the skewness will shift toward513

lower He values (higher asymmetry), and increased frequency of extreme values will lead to higher514

kurtosis [43, 45]. We did not use the lag-1 autocorrelation, although it is often used metric to515

measure the return rate to equilibrium after a perturbation [44], because this statistic it is designed516

to measure stability around a single equilibrium [44, 46], while our framework considers a series of517

fragmentation events between each the system arrives at migration-drift equilibrium.518

For this analysis, we focused on autocorrelated fragmentation (Fig. 2b). We used a more519

connected initial network than used in previous analyses, an RGG with d = 0.6, to capture a520

substantial period that is far from the tipping-point phase. We ran 1000 simulations replicates and521

we considered two monitoring scenarios: (i) entire metapopulation monitoring, where we analyze522

the He distribution across all populations in the network at each step, and (ii) single population523

monitoring, focusing on the He of the final nodes to become isolated. In the latter case, we used524

the generic_ews function from the R package earlywarnings to apply a sliding window approach525

over time, with window size of 25% and default parameters without detrending or preprocessing526

the data.527

Data, Materials, and Software Availability528

All code is available in the GitHub repository at https://github.com/Greenbaum-Lab/fragmen529

tation.git530
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