Network-based genetic monitoring of landscape fragmentation

Ohad Peled¹, Jaehee Kim², and Gili Greenbaum¹

¹Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel ²Department of Computational Biology, Cornell University, Ithaca, NY, US

Corresponding author: Gili Greenbaum (gil.G@mail.huji.ac.il)

Abstract

Habitat fragmentation is one of the most immediate and substantial threats to biodiversity, generating isolated populations with reduced genetic diversity. Genetic monitoring has become essential for detecting fragmentation and tracking its progress. However, the coherent interpretation of genetic monitoring data and understanding the genetic consequences of fragmentation require frameworks that accurately represent real-world complexity. Existing theoretical frameworks typically rely on simplified spatial structures and do not adequately capture the heterogeneous migration patterns of natural populations. Here, we integrate network theory and mathematical population genetics to develop a framework for studying the genetic consequences of fragmentation processes, explicitly accounting for heterogeneous connectivity and temporal dynamics. We apply this framework to examine how different fragmentation processes affect genetic measures commonly used in genetic monitoring. We find that different fragmentation scenarios produce substantially distinct trajectories in key genetic measures, sometimes exhibiting rapid transitional dynamics, suggesting that the interpretation of genetic monitoring data must be tailored to ecological contexts. Furthermore, fragmentation can cause deviations from classical theoretical expectations, such as the expected correlation between genetic and geographic distance (isolation-by-distance) or between genetic diversity and connectivity. Finally, we propose and demonstrate detectable early warning signals in genetic monitoring data that precede rapid transitional phases. Our framework thus provides a practical interpretation of genetic monitoring data, bridging the gap between idealized theoretical models and real-world connectivity dynamics.

1 **Introduction**

Rapid human-induced environmental changes affect ecological and evolutionary processes, driving 2 biodiversity loss [1]. One of the main factors driving these changes is landscape fragmentation, 3 the partitioning of landscapes into small and weakly connected habitat patches [2]. Fragmentation 4 reduces connectivity among populations, constraining gene flow and dispersal of individuals [3]. 5 which can negatively impact the health and viability of populations [4–6]. Landscape fragmen-6 tation is expected to erode within-population genetic diversity and increase between-population 7 genetic differentiation due to reduced gene flow and increased genetic drift [7, 8]. Decreased genetic 8 diversity can, in turn, reduce population viability in the short term by increasing risks of inbreed-9 ing depression [7, 9], while also limiting long-term evolutionary potential and adaptive capacity 10 in response to future environmental changes [10, 11]. Consequently, systematically and coher-11 ently tracking fragmentation dynamics and their population-genetic consequences through genetic 12 monitoring remains a major goal in conservation biology. 13

Genetic monitoring of population genetic metrics over time is a cost-effective and direct approach 14 for tracking both the genetic impacts and the underlying ecological processes of fragmentation. 15 The alternative, tracking individual movement among habitat patches, is usually resource-intensive 16 and offers only an indirect proxy for the genetic and evolutionary consequences of fragmentation. 17 Consequently, genetic monitoring of wild populations is widely used to assess population health 18 and viability, landscape connectivity, and species responses to environmental disturbances [12– 19 14]. However, a major challenge in applying genetic monitoring to track fragmentation lies in the 20 interpretation of genetic measures in the context of the ecological process of migration. 21

Early theoretical work in population genetics established foundational frameworks for linking 22 genetic diversity and differentiation to migration under simplified assumptions about gene flow pat-23 terns and spatial configurations [15–17]. For example, the island model assumes equal and constant 24 migration rates without explicit spatial arrangement [15], whereas the stepping-stone model incor-25 porates homogeneous and symmetric migration between adjacent demes arranged on a regular lat-26 tice with an additional long-range migration component [17]. These models provided fundamental 27 insights into how spatial connectivity shapes population genetic structure and introduced key con-28 cepts such as isolation-by-distance, where genetic differentiation increases with geographic distance 29 [18], and the connectivity-diversity relationship, in which populations that are more connected are 30 expected to exhibit higher genetic diversity [19]. However, their simplified assumptions often limit 31 their practical applicability for genetic monitoring and evaluating fragmentation impacts [20]. For 32 example, one critical limitation of most existing modeling frameworks is their inability to capture 33 the temporal dynamics of fragmentation, where landscape degradation and connectivity loss occur 34 as heterogeneous, sequential processes shaped by the specific spatial and temporal characteristics 35 of anthropogenic or climatic drivers [21]. The lack of a modeling framework that integrates realistic 36 spatiotemporal patterns of connectivity and fragmentation thus restricts the practical application 37 of population genetic theory in conservation efforts and limits its utility for informing management 38

39 decisions.

A promising approach for incorporating realistic gene flow patterns into population genetic 40 theory is to represent connectivity between populations as a network—a mathematical construct 41 comprising nodes (habitat patches) connected by edges (connectivity) [22]. Population networks 42 can accommodate complex connectivity patterns beyond the scope of classical population genetics 43 models. Several methods have been developed to infer such networks from genetic data by quanti-44 fying genetic differentiation between population pairs [23–25], with applications across a wide range 45 of taxa [23, 26–32]. These network-based approaches provide a rigorous framework for modeling 46 realistic fragmentation dynamics, enabling more coherent interpretations of genetic monitoring. 47

In this work, to bridge the gap between theory and practice, we develop a framework based 48 on population networks, integrating advances in population-genetic theory and network science to 49 investigate the spatiotemporal genetic consequences of landscape fragmentation. This framework 50 explicitly incorporates real-world complexities within a conceptually simple and tractable model. 51 We apply this framework to examine how different fragmentation scenarios affect genetic measures 52 and to assess how network structure impacts population resilience under connectivity loss. While 53 fragmentation is a multifaceted process involving multiple concurrent stressors (e.g., habitat loss, 54 reduced patch size, edge effects), our focus here is on connectivity loss (also termed fragmentation 55 per se; [5, 33]). Our approach enables improved interpretation of genetic monitoring data and 56 facilitates identification and measurement of fragmentation progression. Additionally, our modeling 57 framework can assist in predicting the genetic impacts of connectivity loss and evaluating the genetic 58 health of fragmented populations. 59

60 2 Results

To model the genetic consequences of fragmentation, we consider a metapopulation in which some 61 populations are connected by migration. For tractability, we assume equal and symmetric migra-62 tion rates among all connected populations. Any such connectivity pattern can be represented as 63 a population network (Fig. 1a). To relate migration patterns to genetic measures, we employ the 64 approach developed by Alcala *et al.* [34], which consists of two transformations: (i) from migra-65 tion matrices to pairwise coalescent-time matrices [35], and (ii) from coalescent-time matrices to 66 pairwise genetic differentiation measured by F_{ST} [36] (see Methods and Supplementary Information 67 Text). This procedure provides, for a given migration matrix, expected pairwise F_{ST} between all 68 population pairs, as well as genetic diversity measured by expected heterozygosity (H_e) for each 69 population (Fig. 1a). For simplicity, we further assume uniform population sizes and mutation 70 rates across all populations, allowing us to use an 'unscaled' heterozygosity measure (see Methods); 71 therefore, our H_e values should be interpreted only relatively, and values exceeding one are possible. 72

To simulate an ecologically plausible metapopulation, which is usually embedded in a geographic
landscape, we use a random geometric graph (RGG) model [37] as the initial network. In this model,
populations are more likely to be connected if they are geographically close to each other. We model

a fragmentation process by iteratively removing edges according to one of several predefined fragmentation scenarios (Fig. 1b). After each edge removal, we recompute genetic measures, tracking
their changes until all edges have been removed and the network has become fully fragmented into
isolated populations. This modeling framework is highly flexible and enables the study of diverse
connectivity patterns and fragmentation scenarios while providing rigorous analytical expectations
for key genetic measures commonly used in genetic monitoring.

We consider eight fragmentation scenarios (Fig. 1b): (i) random fragmentation, representing global environmental changes (e.g., climate change); (ii) autocorrelated fragmentation, representing spatially correlated landscape disturbances (e.g., agricultural expansion); (iii) intrusive fragmentation, representing the emergence of isolated habitats within the landscape; (iv) regressive fragmen-

Figure 1: Schematic representation of the network-based framework for modeling population genetic effects of fragmentation. (a) Computation of genetic measures along fragmentation. In the top row, populations (yellow/brown patches) are embedded in a landscape (green) undergoing fragmentation. Below, the metapopulation is represented as a network with nodes (blue) denoting populations and edges representing migration between populations. Fragmentation is simulated by iteratively removing edges (red). A coalescence matrix is derived from each network, which enables the calculation of genetic diversity and differentiation at each fragmentation step (grey box). These metrics allow monitoring of population genetic changes over time (right side of the grey box). Color intensity of nodes represents network properties associated with genetic measures. (b) Modeling fragmentation processes. Illustrated are eight fragmentation scenarios applied to a single realization of a random geometric graph (RGG). Edges removed under each scenario are shown in red. Further details of each scenario are provided in the text.

tation, representing the expansion of a disturbance into a natural landscape (e.g., urban expansion); 86 (v) distance-based fragmentation, representing reduced dispersal ability through a non-habitable 87 matrix (e.g., disturbances hindering dispersal through the matrix, reducing dispersal distances); 88 (vi) divisive fragmentation, representing linear destruction of connectivity (e.g., road or railway 89 construction); (vii) best-case fragmentation, an idealized scenario that sequentially removes the 90 least important edges, thus maximizing connectivity at each step; and (viii) worst-case fragmen-91 tation, similar to the best-case scenario, except the most important edge is removed at each step. 92 The last two scenarios are theoretical constructs intended to establish upper and lower bounds for 93 genetic measures rather than to depict realistic fragmentation processes. Detailed descriptions of 94 each fragmentation scenario are provided in Methods. 95

⁹⁶ 2.1 Genetic monitoring measures strongly depend on the fragmentation sce ⁹⁷ nario

Across all fragmentation scenarios, we observe an increase in genetic differentiation and a decrease 98 in genetic diversity as fragmentation progresses (Fig. 2). However, the rate and pattern of these 99 changes vary substantially among scenarios. The slowest erosion of genetic diversity and the most 100 gradual increase in genetic differentiation were observed under the best-case scenario (pink curve 101 in Fig. 2), as expected. In contrast, the worst-case scenario exhibited the most rapid erosion of 102 genetic diversity and the steepest increase in differentiation (grey curve in Fig. 2). Thus, these 103 two theoretical extremes provide upper and lower bounds for the retention of genetic health in the 104 metapopulation, against which other fragmentation scenarios can be compared. 105

In the random and autocorrelated scenarios, the loss of diversity and increase in differentiation are almost undetectable in the early stages of fragmentation but then become substantial at $\sim 60\%$ fragmentation. This pattern is reflected in concave curves for genetic diversity and convex curves for differentiation (blue and orange curves in Fig. 2). The distance-based scenario (purple curve in

Figure 2: Changes in genetic measures along fragmentation under eight fragmentation scenarios. (a) Mean genetic diversity (H_e) across all populations along fragmentation. (b) Mean genetic differentiation (pairwise F_{ST}) among all population pairs. Lines denote means across 100 simulation replicates, with shaded regions indicating standard deviations. Fragmentation is measured as the fraction of edges removed from the initial network.

Fig. 2) shows a similar trend, but the loss of genetic diversity begins earlier in the fragmentation 110 process and progresses faster than in the random and autocorrelated scenarios. In contrast, in the 111 regressive and divisive scenarios, the curvature patterns are reversed: the genetic diversity curve is 112 convex, with rapid and substantial decreases in genetic diversity early in the fragmentation process. 113 and the genetic differentiation curve is concave, indicating earlier deterioration of metapopulation 114 genetic health compared to the other scenarios. For example, in the divisive scenario, a > 50%115 change in genetic measures occurs already by 25% of the fragmentation process (brown curve 116 in Fig. 2). In the intrusive scenario, both genetic measures change approximately linearly as 117 fragmentation progresses (green curve in Fig. 2). 118

To understand the robustness of these patterns, we also examined how F_{ST} and H_e measures 119 change along fragmentation under different migration rates and initial network topologies (Figs. S1 120 and S2). Overall, the patterns remain similar across different migration rates, except at low mi-121 gration rates, where the absolute values of F_{ST} are higher in the early stages of fragmentation 122 (Fig. S1b). Similarly, the results remained consistent when the initial network topologies were 123 generated using either the Erdős-Rényi model or a small-world network model instead of the RGG 124 model (Fig. S2). However, the differences among fragmentation scenarios were less pronounced in 125 these analyses, highlighting the importance of considering spatially explicit network models, such 126 as the RGG model. 127

Overall, our results demonstrate that, for a given level of connectivity loss, the risk of inbreeding depression and the reductions in both evolutionary potential and between-population differentiation strongly depend on the type of fragmentation process experienced by the metapopulation. Therefore, the interpretation of genetic monitoring data must account for the context and drivers of fragmentation. For example, a 10% decrease in H_e might reflect gradual connectivity decline under intrusive fragmentation, whereas the same decrease under random fragmentation could indicate dramatic habitat deterioration.

¹³⁵ 2.2 Relationship between heterozygosity and network components

When considering the distributions of the genetic measures rather than just their means, we observe 136 that H_e distributions remain largely unimodal throughout the fragmentation process, with a shift 137 towards $H_e = 0$ occurring as isolated nodes accumulate (Figs. 3a–c and S4a–e). Similarly, the 138 F_{ST} distributions exhibit increasing bimodality, with density accumulating at $F_{ST} = 1$ as more 139 nodes are separated into different components (Figs. 3d–f and S4f–j). Changes in the shape of 140 these distributions along fragmentation are also reflected in the variance of genetic diversity across 141 populations (Fig. 3g): the level of fragmentation that maximizes variance, as well as the maximum 142 variance value, differs among fragmentation scenarios. The increase in H_e variance can make 143 the detection of fragmentation—and genetic health in general—more challenging at intermediate 144 fragmentation levels because more populations will need to be sampled to correctly characterize 145 the genetic diversity state of the metapopulation. 146

Figure 3: Changes in the distributions of genetic measures along fragmentation. Panels (a–f) show density distributions for three fragmentation scenarios: random, distance-based, and regressive (additional fragmentation scenarios are shown in Fig. S4). Four snapshots from the process are shown: 0%, 25%, 50%, and 75% fragmentation. Diagonal lines on bars indicate truncated values (for $H_e = 0$ or $F_{ST} = 1$). All distributions are pooled from 100 simulation replicates. (a–c) Distribution of expected heterozygosity (H_e) of populations. (d–f) Distribution of pairwise F_{ST} across all population pairs. (g) Change in the variance of H_e across all populations in the network. (h) Relationship between the fraction of nodes in the largest component and mean H_e across all populations in each network. For each scenario, dots denote the means across 100 simulation replicates, and lines denote the standard deviations.

As fragmentation progresses, network structure changes and populations begin to disconnect 147 from the main component (Fig. S3). For example, the rapid deterioration in genetic health under 148 the divisive scenario (brown in Fig. 2) can be attributed to the early emergence of medium and 149 small network components, which reduce genetic diversity and increase between-component differ-150 entiation (Fig. S3f). To better understand the effect of component structure on genetic diversity, 151 we tracked the size of the largest component throughout the fragmentation process (Fig. 3h). We 152 observe a strong correlation between the size of the largest component and the mean H_e across 153 populations in the network (r = 0.97-0.98 across scenarios, p-value < 0.001). This correlation is 154 relatively consistent across different fragmentation scenarios, indicating that the size of the largest 155 component is an important determinant of genetic diversity. 156

This result can be interpreted in relation to the theoretical relationship between effective population size and heterozygosity, $H_e = \frac{4N\mu}{1+4N\mu}$ [38]. Because we consider a small effective population size relative to the mutation rate (i.e., $\theta = 4N\mu \ll 1$), we expect an approximately linear relationship of $H_e \approx 4N\mu$. The result in Fig. 3h is similar to what one would expect if we treated each component as a well-mixed population. However, the relationship between H_e and component size is sublinear, reflecting the fact that components are not well-mixed and should therefore be represented with effective sizes smaller than their actual sizes.

¹⁶⁴ 2.3 Using network metrics in genetic monitoring

To better understand how tracking network characteristics can inform genetic monitoring, we eval-165 uated the association between genetic measures and commonly used network metrics. We first 166 examined the relationship between a population's genetic diversity and its centrality. There are 167 different ways to measure network centrality [39], each of which can be interpreted differently with 168 respect to population genetic processes [22]. Here, we evaluated two common metrics: degree 169 centrality (i.e., the number of edges incident to a node), which measures local centrality, and be-170 tweenness centrality (i.e., the frequency with which a node lies on shortest paths between other 171 nodes), which measures global centrality. Under classical population genetics theory, populations 172 with higher connectivity should exhibit greater genetic diversity due to increased gene flow, leading 173 to higher H_e at migration-drift equilibrium [19]. Consistent with this expectation, analysis of the 174 initial (pre-fragmentation) networks showed a strong positive correlation between degree centrality 175 and H_e (r = 0.71-0.95, Fig. 4a). However, because all populations had a relatively high H_e , this 176 relationship was nonlinear, exhibiting a saturating effect: while H_e increased with degree at low 177 connectivity, it plateaued for highly connected nodes (Fig. S5a). Hence, local connectivity increases 178 genetic diversity only up to a threshold, beyond which additional migration corridors do not sig-179 nificantly contribute to maintaining genetic diversity. In contrast, the association between H_e and 180 betweenness centrality was weaker for nodes with low betweenness (Fig. S5b). 181

Throughout fragmentation, the correlation between H_e and degree centrality remains consis-182 tently high for some scenarios but declines rapidly early in the fragmentation process under the 183 worst-case, divisive, and distance-based scenarios (Fig. 4a). This decline may result from network 184 partitioning into components of varying size in these fragmentation scenarios, where component 185 size has a stronger effect on H_e than does local connectivity. For example, a densely connected 186 population in a small component with few populations may have lower H_e than a sparsely con-187 nected population in a larger component with many populations. Thus, component size, rather 188 than degree centrality, is a primary determinant of genetic diversity at these intermediate frag-189 mentation stages. Interestingly, in these scenarios, the correlation later rebounds, converging to 190 levels similar to those of the other fragmentation scenarios. This suggests that once components 191 reach comparatively small sizes, within-component degree centrality once again becomes a strong 192 determinant of H_e . 193

Figure 4: Correlation between population genetic measures and network metrics. The Pearson correlation coefficient r was computed between genetic diversity (H_e) and network centrality (panels a–b), or between genetic differentiation (F_{ST}) and distance metrics (panels c–f), for eight fragmentation scenarios. (a) Correlation between a population's H_e and its degree centrality (number of connected edges). (b) Correlation between a population's H_e and its betweenness centrality (global centrality metric). (c) Schematic illustration of three different distance metrics for a pair of populations (red nodes). (d) Correlation between the F_{ST} of a pair of populations and their shortest-path network is embedded. (e) Correlation between the F_{ST} of a pair of populations and their shortest-path network distance. (f) Correlation between the F_{ST} of a pair of populations and their value to the distance.

The association between genetic diversity and betweenness centrality was generally weaker than that for degree centrality, with less variation among fragmentation scenarios (Fig. 4b). This suggests that populations do not necessarily need to occupy a key gene flow hub to maintain high genetic diversity, as has been observed in some systems [40]. One implication of this is that peripheral populations in large, well-connected networks can maintain genetic diversity comparable to that of central populations in smaller, less connected components.

Next, we examined the relationship between pairwise F_{ST} and three network distance metrics relevant for genetic monitoring (Fig. 4c): (i) Euclidean distance in the two-dimensional space

of the embedded RGG network, (ii) shortest-path distance (the minimum number of edges re-202 quired to connect a pair of nodes), and (iii) random-walk distance (the expected number of edges 203 traversed in a random walk between two nodes). Euclidean distance represents the geographic 204 distance, whereas estimating the network distances requires knowledge of migration or movement 205 patterns in the metapopulation [22]. Prior to fragmentation, we observed strong correlations be-206 tween F_{ST} and all three distance metrics (r = 0.7-0.75, Fig. 4d-f), indicating that geographically 207 distant populations are more genetically differentiated irrespective of how distance is measured. 208 This finding aligns with the isolation-by-distance expectation derived from stepping-stone [17] and 209 continuous-space [41] models, suggesting that such idealized models are a good approximation for 210 sufficiently well-connected networks [22]. However, as fragmentation progresses, these correlations 211 vary substantially both over the course of fragmentation and among scenarios (Fig. 4d-f). 212

For Euclidean distance, the correlation declines under most fragmentation scenarios, particularly 213 under the worst-case, divisive, best-case, and autocorrelated scenarios (Fig. 4d). Interestingly, 214 these processes differ substantially in their network structure during fragmentation, particularly 215 in the size of the largest connected component (Fig. S3), indicating that additional topological 216 properties are needed to account for the relationship between genetic differentiation and geographic 217 distance. In contrast, for shortest-path distance, the correlation consistently increases across most 218 processes we examined (the theoretical best-case scenario is the exception) and generally shows the 219 strongest association between F_{ST} and distance (Fig. 4e). This suggests that this network metric is 220 particularly suited for genetic monitoring, either as a non-genetic proxy for genetic differentiation or 221 as a proxy for connectivity from pairwise F_{ST} data. For the random-walk distance, the relationship 222 remains relatively stable throughout fragmentation for most scenarios, except for a decline in the 223 worst-case and divisive scenarios (Fig. 4f). 224

Overall, these analyses highlight that the topological properties of population networks can inform the tracking of genetic diversity and differentiation patterns. However, relating genetic measures to network properties such as components, centrality, or distance measures should, in most cases, be done in the context of the fragmentation scenario. Classical population genetic relationships—such as those between gene flow and diversity or distance and differentiation—are useful for well-connected populations but may diverge from classical theory when fragmentation processes shape the topology of metapopulation connectivity.

²³² 2.4 Early warning signals in genetic monitoring

The goal of genetic monitoring is to track the genetic health of populations and to infer underlying ecological processes. However, our findings suggest that inferring fragmentation solely from genetic metrics can be challenging because substantial shifts in genetic measures often occur only in the later stages of fragmentation under certain fragmentation scenarios. In such cases, once genetic diversity declines and population differentiation increases, the transition is both rapid and pronounced (Fig. 2). This transition can be considered a tipping-point phase, before which it is

difficult to detect ongoing fragmentation by tracking the means of H_e and F_{ST} . This raises the 239 question: Can genetic monitoring data detect landscape fragmentation early enough—before the 240 population transitions to a highly fragmented and diversity-depleted state? In other words, if we 241 are tracking genetic measures in a metapopulation that is progressively undergoing fragmentation. 242 can we use genetic data to provide an early warning signal prior to the tipping-point phase during 243 which genetic diversity and differentiation dramatically change? To address this question, we eval-244 uated whether early warning signals can be extracted from genetic diversity measures, borrowing 245 methods from complex systems theory [42, 43]. Our analysis provides proof-of-concept for the 246 potential to integrate early warning methodologies into genetic monitoring frameworks. 247

For this demonstrative analysis, we focused on the genetic diversity under the autocorrelated 248 fragmentation scenario, where edges are removed in a spatially coordinated manner. We first con-249 sidered a genetic monitoring scheme that tracks the H_e distributions of all populations throughout 250 fragmentation (Fig. 5a). At each time step, we analyzed the distribution of H_e across populations 251 and computed several summary statistics-standard deviation, skewness, and kurtosis-which have 252 been found to be reliable early warning indicators in other disciplines [44, 45]. Another common 253 statistic, lag-1 autocorrelation, was not used because it is intended to measure stability around 254 a single equilibrium [44, 46], which did not hold in our simulations. As the metapopulation ap-255 proaches the tipping-point phase, the theoretical expectation is that the standard deviation of the 256 H_e distribution will increase, the skewness will shift toward the new state (in this case, asymmetry 257 towards lower H_e values), and the kurtosis will increase due to an increased frequency of extreme 258 values [43, 45]. To evaluate this, we computed these summary statistics throughout fragmenta-250 tion (green curves in Fig. 5b–d) and examined whether they show substantial changes prior to the 260 tipping-point phase (the sharp drop in the orange curves at $\sim 80-90\%$ fragmentation in Fig. 5b-d). 261

Some early warning signals prior to the tipping-point phase were clearly observable in our 262 analyses (Fig. 5b–d). For example, the standard deviation of the distribution of H_e across the 263 metapopulation increases steadily as fragmentation progresses, and substantial changes in this 264 statistic are observable at the early stages of fragmentation even when changes in the mean are not 265 vet detected (Fig. 5b). Thus, by tracking the standard deviation among populations over time, a 266 noticeable change in this summary statistic could be identified and used as an early warning signal 267 before the tipping-point phase. The mean skewness and kurtosis also showed early changes that 268 can serve as early warning signals (Fig. 5c-d). However, the trajectories of skewness and kurtosis 269 fluctuated over time and were noisier than the standard deviation, suggesting that they are less 270 reliable as early warning indicators. This means that, while tracking the mean metapopulation 271 H_e would not indicate that a rapid reduction in genetic health is approaching, monitoring higher 272 moments could potentially provide an early indication of genetic deterioration. 273

We also considered a more limited monitoring scenario, where H_e is monitored for a single population (Fig. 5e). In this setting, a single population is tracked over time, and we evaluate the H_e distribution of 25% sliding temporal windows throughout fragmentation. As with the previous scenario, we tracked changes in the summary statistics of the distributions along fragmentation.

Monitoring all populations

Monitoring a single population

Figure 5: Early warning signals before tipping point in genetic monitoring. The analysis examines fragmentation under the autocorrelated scenario (Fig. 1b). (a) Schematic of the metapopulation-monitoring approach. At each time step, we analyze the H_e distribution of all connected populations in the network (largest component). The tipping-point phase, during which genetic diversity dramatically declines, is denoted in red. Genetic diversity distributions closer to the tipping-point phase may differ, with summary statistics potentially providing early warning. (b-d) Mean metapopulation heterozygosity (orange) and three early warning statistics (green: SD in (b), skewness in (c), and kurtosis in (d)) along fragmentation. Solid lines show the mean across 1000 simulation replicates, shaded areas show the standard deviation, and thin lines show ten individual replicates. (e) Schematic of the single-population monitoring approach. The H_e of a single population is tracked with a sliding window; the H_e distributions in each window are then analyzed. The tipping-point phase is shown in red. As above, the genetic diversity distributions in windows closer to the tipping-point phase may differ, with summary statistics potentially providing an early warning. (f-h) Mean metapopulation heterozygosity (orange) and three early warning statistics computed from 25% of the data per window (green: SD in (f), skewness in (g), and kurtosis in (h)). Solid lines show the mean across 1000 simulation replicates, shaded areas show the standard deviation, and thin lines show ten individual replicates.

Unlike the scenario that tracks the entire metapopulation, here we were not able to identify substan-278 tial early warning signals (Fig. 5f-h). While the standard deviation did increase as fragmentation 279 progressed, the change was not substantial prior to the tipping-point phase (Fig. 5f). Although 280 no directional change in kurtosis was observed, skewness showed a moderate early increase, which 281 could potentially provide some early warning (Fig. 5g, h). Taken together, our analyses indicate 282 that under the simulation settings examined, cross-sectional monitoring of multiple populations 283 at each sampling occasion yields earlier and more reliable early warning signals than tracking a 284 single population through time, even when the latter is summarized over an extended temporal 285 window. The likely reason is that the cross-sectional snapshot includes multiple quasi-independent 286 observations per time step, whereas the sliding-window yields serially autocorrelated records. 287

288 **3** Discussion

Habitat fragmentation is one of the most pressing threats to global biodiversity [2, 47], and genetic 289 monitoring could be instrumental in tracking and managing it. However, developing monitoring 290 and intervention strategies that take into account the real-world complexities of population struc-291 ture remains a challenge [48, 49]. We present a framework that enables the modeling of habitat 292 fragmentation and its impacts on population genetic measures, thereby expanding the potential 293 scope of genetic monitoring. Using this framework, we model complex connectivity patterns and 294 simulate temporal dynamics and spatially heterogeneous fragmentation processes. We examined 295 the effects of different fragmentation scenarios on genetic measures and found that the same rate of 296 fragmentation can lead to markedly different patterns of genetic differentiation between populations 297 (F_{ST}) and levels of genetic diversity within populations (H_e) . In this network-based perspective 298 of fragmentation, we also find that classical population genetic relationships, such as the asso-299 ciation between F_{ST} and geographical distance or between gene flow and local genetic diversity, 300 may not always hold. Network topology metrics can help interpret these associations. Finally, we 301 demonstrate how genetic monitoring can potentially be used to detect early warning signals before 302 fragmentation triggers critical shifts in the genetic health of populations. 303

The population network framework presented here can be applied to study many ecological 304 processes that affect connectivity. Nonetheless, it is especially relevant in the context of genetic 305 monitoring because it can inform how genetic measures in populations change over time [50]. 306 Human activity can induce fragmentation in different ways, but theoretical investigations of frag-307 mentation dynamics and their potential consequences have thus far been limited [21, 51]. Our 308 results underscore the importance of considering the sequence of events leading to fragmentation 309 for accurate evaluation of its progression. While we observe steady rates of genetic changes that 310 are consistent with theory in some cases [52, 53], we also find scenarios in which genetic measures 311 change abruptly (Fig. 2). 312

An important factor in shaping the temporal change in genetic measures is the maximum number of connected populations in the network (i.e., the size of the largest component; Fig. 3h).

For example, scenarios in which a large component is maintained for a longer period (best-case. 315 random, autocorrelated; Fig. S3) maintain the genetic health of populations longer (Fig. 2). This 316 pattern holds even when populations within components are weakly or indirectly connected. From 317 a landscape management perspective, it implies that enhancing connectivity between network mod-318 ules (i.e., clusters of connected populations) may be more beneficial for maintaining high levels of 319 genetic diversity than increasing direct connectivity within a weakly connected module. This result 320 is consistent with the expectation that larger populations (or metapopulations) will exhibit higher 321 genetic diversity due to increased gene flow and decreased genetic drift at the global scale [38]. 322 However, increasing global connectivity can lead to homogenization of genetic pools and loss of 323 local adaptations [54, 55]. Therefore, considering the spatial scale at which connectivity between 324 populations is measured is crucial for accurately interpreting genetic monitoring outputs. 325

Populations and ecological systems facing environmental changes can undergo dramatic, unex-326 pected, and often irreversible transitions. In the context of tracking biodiversity, several studies 327 have introduced the concept of fragmentation thresholds that lead to regime shifts in biodiversity 328 [56–58]. However, regime shifts in terms of genetic health and population-level metrics have re-329 ceived far less attention and have been considered primarily in the context of adaptive evolution in 330 response to stress [59]. Consequently, genetic monitoring of populations is often reduced to qualita-331 tive assessments. We demonstrated that genetic indicators may appear constant during substantial 332 periods of fragmentation, followed by rapid shifts in genetic metrics (e.g., random or autocorrelated 333 fragmentation in Fig. 2). This suggests that a standard interpretation of genetic monitoring—no 334 genetic change over time implies no underlying fragmentation process—can be misleading. As a 335 proof-of-concept, we showed that early warning signals may be detectable by tracking features of 336 the distributions of genetic monitoring data. This is particularly true if a large number of popula-337 tions in the metapopulation are monitored. Although there is a substantial body of theoretical and 338 statistical literature on early warning signals [42, 43, 46, 60], to the best of our knowledge, no theo-339 retical or empirical studies have explored the integration of these methods with population-genetic 340 data so far. Further investigation, applying a more comprehensive suite of early warning methods 341 (e.g., Kendall's τ statistic, conditional heteroskedasticity) to empirical data, may shed additional 342 light on the effectiveness of this approach. 343

Patterns of spatial genetic structure have been extensively studied for almost a century, both 344 in theoretical population genetic models [17, 18, 35, 61] and in empirical studies of natural pop-345 ulations [62–64]. One prevailing view is that spatial separation generates isolation-by-distance 346 patterns reflected in genetic differentiation measures [17, 18, 65]. However, we find that these pat-347 terns may deviate from classical expectations depending on the underlying fragmentation scenario 348 and the distance metric used (Fig. 4c-f). Similarly, the relationship between genetic diversity and 349 connectivity [66–68], a key guideline in conservation practices [69], can also weaken during fragmen-350 tation (Fig. 4a-b). These findings highlight the need to integrate complex spatial configurations of 351 populations and realistic descriptions of ecological processes into population genetic studies. 352

Although our framework is flexible and allows detailed spatial configurations, we assumed con-

stant population sizes and symmetric continuous migration rates, and we did not incorporate 354 extinction-colonization dynamics. While our sensitivity analyses suggest that the way different 355 fragmentation scenarios affect genetic measures is relatively general and not strongly affected by 356 the initial network structure or migration rates, other ecological features may have important im-357 pacts. Our main goal, therefore, is to provide qualitative understanding of how genetic monitoring 358 data should be interpreted, rather than to offer precise ways to represent realistic population dy-359 namics. One important assumption in our model relates to the time required for a system to reach 360 migration-drift equilibrium between fragmentation steps. When the rate of fragmentation is sub-361 stantially faster than the rate of approach to equilibrium, our framework may not be appropriate. 362 It has been suggested that genetic differentiation may respond more rapidly than heterozygosity 363 to changes in migration [52] and reach equilibrium faster [70, 71]; therefore, in some cases, the 364 framework may be suitable for tracking genetic differentiation but not genetic diversity. 365

As non-invasive population-genomic data become increasingly accessible, genetic monitoring is 366 expected to emerge as a leading tool in conservation biology for assessing the health, ecology, and be-367 havior of natural animal and plant populations. However, the gap between theoretical expectations 368 and practical challenges in conservation biology currently limits our ability to accurately interpret 369 genetic data and develop landscape-specific and species-specific conservation strategies. Our frame-370 work incorporates the real-world complexities of space and time and is readily interpretable in terms 371 of genetic monitoring. Here, we explored an important aspect of fragmentation—the processes and 372 patterns by which between-population connectivity is lost—but our framework can be readily ex-373 panded to investigate other anthropogenic effects, such as habitat loss (e.g., by simulating different 374 node-removal processes) or the utility of interventions (e.g., prioritization of ecological corridors). 375 Our network-based framework thus serves to narrow the gap between theoretical insights and the 376 complex ecological realities of conservation biology. 377

378 4 Methods

All analyses were performed using Python 3.11.1, except where stated otherwise.

³⁸⁰ 4.1 Computing genetic measures in population networks

To compute genetic measures for population networks, we employed the framework developed by 381 Alcala et al. [34], which integrates the mathematical relationship between migration and coales-382 cence times by Wilkinson-Herbots [35] with the relationship between coalescent times and F_{ST} 383 by Slatkin [36]. Our method relies on transformations among three matrices: (i) the migration 384 matrix describing the pairwise migration rates, (ii) the coalescence matrix describing the expected 385 time to coalesce for two lineages within or between populations, and (iii) the F_{ST} matrix describ-386 ing the pairwise genetic distance between populations. A full explanation of the derivations and 387 computations is presented in the Supplementary Information Text. 388

We considered an idealized system of K populations of equal size, evolving under the neutral

Wright-Fisher model at migration-drift equilibrium [19]. Let m_{ij} denote the backward migration 390 rate from population i to j, representing the probability that a lineage in i originated in j in the 391 previous generation. We assumed symmetric migration $(m_{ij} = m_{ji}$ for all i and j) to ensure con-392 servative migration [35], where total incoming and outgoing migration balance in each population: 393 $\sum_{j\neq i} M_{ij} = \sum_{j\neq i} M_{ji}$. While conservative migration is a weaker assumption than symmetric mi-394 gration, we imposed symmetric migration for tractability. Under these assumptions, the migration 395 structure of the populations is represented as a symmetric, undirected network M of K nodes 396 with zero-diagonal entries. For a pair of nodes i and j $(i \neq j)$, the weight assigned to the edge is 397 $M_{ij} = 4Nm_{ij}$, representing the expected number of migrants from i to j per generation, with N 398 denoting the population size of each of the nodes. We simulated population networks with K = 50399 nodes, where migration rates are uniform across all edges $(M_{ij} = 1 \text{ in the main text, and alternative})$ 400 migration rates in Fig. S1). 401

402 4.2 Simulating fragmentation processes in population networks

Because natural populations are embedded in a geographic space, we used spatial network models 403 [72], in which nodes correspond to populations with assigned geographic coordinates. We primarily 404 used the random geometric graph (RGG) model [37], one of the simplest and most widely studied 405 spatial network models, to generate the initial network in our simulations (see Fig. S2 for alternative 406 network models). In this model, K populations are placed uniformly at random in a unit square in 407 Euclidean space, and an edge is formed between two nodes if their Euclidean distance is below a 408 fixed threshold d. The RGG model is particularly well-suited for representing migration in spatially 409 structured populations because it captures the ecologically realistic constraint that migration occurs 410 only between sufficiently proximate populations. The connectivity threshold for two-dimensional 411 RGG networks (i.e., the value of d above which the network is almost surely connected) is $\sqrt{\frac{\log K}{\pi K}}$ 412 [73], which equals d = 0.16 for K = 50. We therefore set d = 0.30, which consistently generates a 413 connected network that is not too dense yet sufficiently above the threshold at which the network 414 is close to being disconnected. 415

To model the fragmentation process, we sequentially remove edges from the initial network, one 416 at a time, until no edges remain. We consider eight fragmentation scenarios (Fig. 1). (i) Random 417 fragmentation. At each fragmentation step, an edge is removed uniformly at random, representing 418 non-specific habitat deterioration, such as fragmentation induced by global climate change. (ii) 419 Autocorrelated fragmentation. Initially, one random edge is removed. At each subsequent step, one 420 edge is removed uniformly at random from the set of edges adjacent to the previously removed edge 421 (i.e., edges sharing a node with the last removed edge). This process models spatially correlated 422 landscape disturbances, such as urban or agricultural expansions. (iii) Intrusive fragmentation. 423 A node is selected uniformly at random, and all its incident edges are removed in random order. 424 Once these edges are removed, another node is chosen randomly, its incident edges are removed, and 425 the process is repeated. This process generates isolated habitable "islands" within the landscape, 426 representing, for example, the formation of micro-reserves—small, disconnected populations. (iv) 427

Regressive fragmentation. Edges are sorted by the minimum x-coordinate of their incident nodes in 428 the Euclidean plane and removed progressively from low to high x-coordinate values, starting with 429 the edge having the smallest x-coordinate. This process represents large-scale spatial disturbances 430 moving across the habitat, such as shifts in climate-change fronts. (v) Distance-based fragmentation. 431 At each step, the edge connecting the most distant populations in the underlying Euclidean space is 432 removed. This process represents a general environmental deterioration that impedes long-distance 433 dispersal among habitat patches. (vi) Divisive fragmentation. A line is drawn in the Euclidean plane 434 by connecting two points on different boundaries (either opposing or neighboring boundaries) of the 435 metric space (selected uniformly at random), effectively bisecting the habitat. All edges intersecting 436 this line are sequentially removed, starting with those having the smallest x-coordinate (as defined 437 in (iv)). This process models the introduction of linear barriers, such as roads or railways, into 438 the landscape. (vii) Best-case fragmentation. At each step, the edge with the lowest betweenness 439 centrality is removed. Betweenness centrality was computed with the NetworkX Python library. 440 Because such edges contribute minimally to network connectivity, removing them is expected to 441 have the least impact on genetic measures. Although this scenario is not realistic, it serves as an 442 upper benchmark for evaluating genetic measures at a given level of fragmentation. (viii) Worst-443 case fragmentation. Similar to best-case fragmentation, but at each step, the edge with the highest 444 betweenness centrality is removed. This process provides a lower benchmark for genetic measures 445 at a given level of fragmentation. 446

These eight fragmentation processes do not exhaustively cover all possible scenarios, but rather describe typical ecological and anthropogenic disturbance patterns relevant to genetic monitoring [21, 74]. Because these processes are stochastic, we performed 100 independent replicates per fragmentation type, randomizing the initial network configuration and the fragmentation sequence in each replicate.

In each simulation replicate, we computed the changes in F_{ST} and H_e distributions in response 452 to fragmentation, assuming migration-drift equilibrium is reached between successive iterations 453 of edge removal. Each replicate generates a sequence of migration matrices M_0, \ldots, M_x , with x 454 being the last fragmentation step. From these migration matrices, we computed corresponding 455 F_{ST} matrices F_0, \ldots, F_x and H_e vectors H_0, \ldots, H_x . These sequences reflect the changes in genetic 456 differentiation and genetic diversity throughout fragmentation. Using these sequences, we tracked 457 changes in the means (Fig. 2), sample variances (Fig. 3g) and distributions (Fig. 3a–f) of the genetic 458 measures along fragmentation. 459

We also evaluated changes in network structure throughout fragmentation by tracking for four structural categories: (i) largest component, (ii) other components with > 3 populations (medium components), (iii) components of 2–3 populations (pairs/triads), and (iv) isolated nodes. At each time step, we computed the mean proportion of nodes in each category across simulation replicates.

To account for alternative patterns of gene flow in our initial network, and to evaluate their effect on our main conclusions, we considered two additional models. (i) The Erdős–Rényi (ER)

random network [75], in which, for K populations, each pair of populations is connected by an 466 edge with probability p. To generate a well- but not fully-connected initial network, we set p = 0.1467 (125 edges in total). To allow spatially explicit analysis that can be compared to the RGG, we 468 embedded this model in Euclidean space, with nodes placed uniformly at random. (ii) The small-469 world Watts-Strogatz (WS) network is constructed by connecting each population (node) to its k470 nearest neighbors in a ring topology, and then rewiring each edge with probability p to connect to a 471 randomly chosen population (node), introducing long-range connections while preserving the total 472 number of edges. The WS network can represent species with a life history of many short-distance 473 dispersal events and an occasional long-distance dispersal event. We use a modified variant of this 474 model to incorporate spatial characteristics to the network [76, 77]. We use the grid_graph function 475 in the Python library NetworkX to generate a two-dimensional network with n nodes, setting k = 4476 (4 neighbors for each node), and a re-wiring probability of p. This setting converges to the stepping 477 stone model [17] for p = 0. For our simulations, we set n = 49 (a 7 × 7 matrix). 478

479 4.3 Correlations between genetic measures and node attributes

To investigate how network metrics influence genetic monitoring along fragmentation, we examined 480 the relationship between genetic measures and network metrics. For each network at each frag-481 mentation step, we computed two node centrality measures, degree centrality (number of incident 482 edges for the focal node) and betweenness centrality (how often a node lies on the shortest paths 483 between other pairs of nodes), for all nodes in the network. We then computed the Pearson corre-484 lation coefficient (r) between node's H_e and their centrality score, at each fragmentation step and 485 for each centrality measure (we excluded isolated nodes, for which centrality is undefined). Then, 486 we computed the mean r and its SD for each fragmentation step across the simulation replicates, 487 for each one of the centrality metrics and each fragmentation scenario. We only show significant 488 correlation results (p < 0.05) with data from 5 or more replicates. 489

Similarly, we evaluated the relationships between network distance metrics and pairwise F_{ST} . 490 We computed the distance between all pairs of nodes in each fragmentation step using three distance 491 metrics: (i) Euclidean distance, the standard geometric measure in the embedded metric space, 492 analogous to the typical geographic distances among populations; (ii) shortest-path distance [78], 493 calculated as the minimum number of edges needed to traverse from one node to another, reflecting 494 topology-aware movement; (iii) random-walk distance [79], defined as the mean number of edges 495 a random walker requires to travel from one node to another, which is suitable for movement 496 that is unaware of the network topology or a non-targeted movement [22]. Random-walk distance 497 was estimated using 50 random-walk iterations per pairwise comparison. The correlations were 498 calculated only within connected components of size > 3, and pairs of nodes in disconnected 499 components were excluded from correlation calculations (these pairs have $F_{ST} = 1$ and are infinitely 500 distant from each other for shortest-path and random walk distance). We computed the Pearson 501 correlation coefficient (r) between the F_{ST} of all node pairs and their distance score, at each 502 fragmentation step and for each distance metric. We used the mantel python library to perform 503

a Mantel test and calculate a corresponding p-value with 999 permutations. For networks with multiple components, and hence multiple r and p-values, we calculated the weighted mean r and p based on the component size. We then computed the mean r and its SD for each fragmentation step across the simulation replicates, for each one of the distance metrics and each fragmentation scenario. We only show significant correlation results (p < 0.05) with data from 5 or more replicates.

⁵⁰⁹ 4.4 Detecting early warning signals before population collapse

To identify early warning signals, we computed several summary statistics of the genetic diversity 510 (H_e) distributions that are commonly used as early warning signals: standard deviation, skewness, 511 and kurtosis. As the process approaches the tipping-point phase, the theoretical expectation is 512 that the standard deviation of the H_e distribution will increase, the skewness will shift toward 513 lower H_e values (higher asymmetry), and increased frequency of extreme values will lead to higher 514 kurtosis [43, 45]. We did not use the lag-1 autocorrelation, although it is often used metric to 515 measure the return rate to equilibrium after a perturbation [44], because this statistic it is designed 516 to measure stability around a single equilibrium [44, 46], while our framework considers a series of 517 fragmentation events between each the system arrives at migration-drift equilibrium. 518

For this analysis, we focused on autocorrelated fragmentation (Fig. 2b). We used a more 519 connected initial network than used in previous analyses, an RGG with d = 0.6, to capture a 520 substantial period that is far from the tipping-point phase. We ran 1000 simulations replicates and 521 we considered two monitoring scenarios: (i) entire metapopulation monitoring, where we analyze 522 the H_e distribution across all populations in the network at each step, and (ii) single population 523 monitoring, focusing on the H_e of the final nodes to become isolated. In the latter case, we used 524 the generic_ews function from the R package earlywarnings to apply a sliding window approach 525 over time, with window size of 25% and default parameters without detrending or preprocessing 526 the data. 527

⁵²⁸ Data, Materials, and Software Availability

All code is available in the GitHub repository at https://github.com/Greenbaum-Lab/fragmen tation.git

531 Acknowledgments

We thank Keith Harris and Eyal Halutz for their input and assistance in the analysis. The research was funded by the Binational Science Foundation (BSF) Grant No. 2021244. OP was supported by fellowships from the Israel Ministry of Environmental Protection and from the Minerva Center for the study of Population Fragmentation (MCPF).

536 Author contributions

⁵³⁷ Conceptualization, OP, GG, and JK; Study design, OP, GG, and JK; Coding, OP; Analysis, OP;
⁵³⁸ Writing of Original Draft, OP; Review & Editing, OP, GG, and JK; Funding Acquisition, GG and
⁵³⁹ JK; Supervision, GG and JK.

540 Competing interests

⁵⁴¹ The authors declare no competing interest.

542 **References**

- Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss.
 Science Advances 8, eabm9982 (2022).
- Haddad, N. et al. Habitat fragmentation and its lasting impact on Earth's ecosystems. Science
 Advances 1 (2015).
- ⁵⁴⁷ 3. Van Dyck, H. & Baguette, M. Dispersal behaviour in fragmented landscapes: routine or special
 ⁵⁴⁸ movements? Basic and Applied Ecology 6, 535–545 (2005).
- Fischer, J. & Lindenmayer, D. B. Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography 16, 265–280 (2007).
- 5. Fahrig, L. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolu tion, and Systematics 34, 487–515 (2003).
- Aguilar, R. et al. Habitat fragmentation reduces plant progeny quality: a global synthesis.
 Ecology Letters 22, 1163–1173 (2019).
- Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. *Conservation Biology* 17, 230–237 (2003).
- ⁵⁵⁷ 8. Lowe, A., Boshier, D., Ward, M., Bacles, C. & Navarro, C. Genetic resource impacts of habitat
 ⁵⁵⁸ loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees.
 ⁵⁵⁹ Heredity 95, 255–273 (2005).
- 9. Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nature Reviews Genetics 10, 783–796 (2009).
- Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of
 genetic diversity. *Trends in Plant Science* 14, 51–58 (2009).
- 11. Manel, S. & Holderegger, R. Ten years of landscape genetics. Trends in Ecology & Evolution
 28, 614-621 (2013).

- Siol, M., Bonnin, I., Olivieri, I., Prosperi, J. & Ronfort, J. Effective population size associated
 with self-fertilization: lessons from temporal changes in allele frequencies in the selfing annual
 Medicago truncatula. Journal of Evolutionary Biology 20, 2349–2360 (2007).
- Kendall, K. C. *et al.* Demography and genetic structure of a recovering grizzly bear population.
 The Journal of Wildlife Management 73, 3–16 (2009).

Hauser, L., Adcock, G. J., Smith, P. J., Bernal Ramírez, J. H. & Carvalho, G. R. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (*Pagrus auratus*). *Proceedings of the National Academy of Sciences* 99, 11742–11747 (2002).

- Wright, S. The roles of mutation, inbreeding, crossbreeding and selection in evolution in Proceedings of the Sixth International Congress of Genetics 1 (1932), 356–366.
- Levene, H. Genetic equilibrium when more than one ecological niche is available. *The American Naturalist* 87, 331–333 (1953).
- Kimura, M. & Weiss, G. H. The stepping stone model of population structure and the decrease
 of genetic correlation with distance. *Genetics* 49, 561 (1964).
- ⁵⁸¹ 18. Wright, S. Isolation by distance. *Genetics* 28, 114 (1943).
- ⁵⁸² 19. Wright, S. Evolution in Mendelian populations. *Genetics* 16, 97 (1931).
- ⁵⁸³ 20. Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or ⁵⁸⁴ distance: which pattern of gene flow is most common? *Evolution* **68**, 1–15 (2014).
- Harris, L. D. & Silva-Lopez, G. Forest fragmentation and the conservation of biological diversity in Conservation biology: The theory and practice of nature conservation preservation and management (Springer, 1992), 197–237.
- Greenbaum, G. & Fefferman, N. H. Application of network methods for understanding evolutionary dynamics in discrete habitats. *Molecular Ecology* 26, 2850–2863 (2017).
- Dyer, R. J. & Nason, J. D. Population graphs: the graph theoretic shape of genetic structure.
 Molecular Ecology 13, 1713–1727 (2004).
- Rozenfeld, A. F. *et al.* Network analysis identifies weak and strong links in a metapopulation
 system. *Proceedings of the National Academy of Sciences* 105, 18824–18829 (2008).
- ⁵⁹⁴ 25. Dyer, R. J., Nason, J. D. & Garrick, R. C. Landscape modelling of gene flow: improved power
 ⁵⁹⁵ using conditional genetic distance derived from the topology of population networks. *Molecular* ⁵⁹⁶ Ecology 19, 3746–3759 (2010).
- Ball, M. C., Finnegan, L., Manseau, M. & Wilson, P. Integrating multiple analytical approaches to spatially delineate and characterize genetic population structure: an application to boreal caribou (*Rangifer tarandus caribou*) in central Canada. *Conservation Genetics* 11, 2131–2143 (2010).

- ⁶⁰¹ 27. Munwes, I. *et al.* The change in genetic diversity down the core-edge gradient in the eastern
 ⁶⁰² spadefoot toad (*Pelobates syriacus*). *Molecular Ecology* **19**, 2675–2689 (2010).
- Fitzpatrick, J., Carlon, D., Lippe, C. & Robertson, D. R. The West Pacific diversity hotspot as
 a source or sink for new species? Population genetic insights from the Indo-Pacific parrotfish
 Scarus rubroviolaceus. Molecular Ecology 20, 219–234 (2011).
- Garroway, C. J., Bowman, J. & Wilson, P. J. Using a genetic network to parameterize a
 landscape resistance surface for fishers, *Martes pennanti. Molecular Ecology* 20, 3978–3988
 (2011).
- ⁶⁰⁹ 30. Paschou, P. et al. Maritime route of colonization of Europe. Proceedings of the National
 ⁶¹⁰ Academy of Sciences 111, 9211–9216 (2014).
- ⁶¹¹ 31. Werth, S. & Scheidegger, C. Gene flow within and between catchments in the threatened
 ⁶¹² riparian plant *Myricaria germanica*. *PLOS One* **9**, e99400 (2014).
- ⁶¹³ 32. Windmaißer, T., Kattari, S., Heubl, G. & Reisch, C. Glacial refugia and postglacial expansion
 ⁶¹⁴ of the alpine-prealpine plant species *Polygala chamaebuxus*. *Ecology and Evolution* 6, 7809–
 ⁶¹⁵ 7819 (2016).
- ⁶¹⁶ 33. Fahrig, L. Ecological responses to habitat fragmentation per se. Annual Review of Ecology,
 ⁶¹⁷ Evolution, and Systematics 48, 1-23 (2017).
- Alcala, N., Goldberg, A., Ramakrishnan, U. & Rosenberg, N. A. Coalescent theory of migration
 network motifs. *Molecular Biology and Evolution* 36, 2358–2374 (2019).
- ⁶²⁰ 35. Wilkinson-Herbots, H. M. Genealogy and subpopulation differentiation under various models
 ⁶²¹ of population structure. *Journal of Mathematical Biology* **37**, 535–585 (1998).
- 36. Slatkin, M. Inbreeding coefficients and coalescence times. *Genetics Research* 58, 167–175 (1991).
- ⁶²⁴ 37. Dall, J. & Christensen, M. Random geometric graphs. *Physical Review E* 66, 016121 (2002).
- ⁶²⁵ 38. Kimura, M. Theoretical foundation of population genetics at the molecular level. *Theoretical Population Biology* 2, 174–208 (1971).
- ⁶²⁷ 39. Rodrigues, F. A. Network centrality: an introduction in A mathematical modeling approach
 ⁶²⁸ from nonlinear dynamics to complex systems (Springer, 2018), 177–196.
- 40. Rodger, Y. S., Greenbaum, G., Silver, M., Bar-David, S. & Winters, G. Detecting hierarchical
 levels of connectivity in a population of *Acacia tortilis* at the northern edge of the species'
 global distribution: Combining classical population genetics and network analyses. *PLOS One*13, e0194901 (2018).
- 41. Malécot, G. Quelques schémas probabilistes sur la variabilité des populations naturelles in
 Annales de l'Université de Lyon A 13 (1950), 37–60.
- 42. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. *Nature* 413, 591–596 (2001).

- 43. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
- 44. Dakos, V. *et al.* Methods for detecting early warnings of critical transitions in time series
 illustrated using simulated ecological data. *PLOS One* 7, e41010 (2012).
- Guttal, V. & Jayaprakash, C. Changing skewness: an early warning signal of regime shifts in
 ecosystems. *Ecology Letters* 11, 450–460 (2008).
- ⁶⁴² 46. Veraart, A. J. *et al.* Recovery rates reflect distance to a tipping point in a living system.
 ⁶⁴³ Nature 481, 357–359 (2012).
- 47. Hanski, I. Habitat fragmentation and species richness. Journal of Biogeography 42 (2015).
- 48. Watson, D. *et al.* Monitoring ecological consequences of efforts to restore landscape-scale
 connectivity. *Biological Conservation* 206, 201–209 (2017).
- ⁶⁴⁷ 49. Frankham, R. Challenges and opportunities of genetic approaches to biological conservation.
 ⁶⁴⁸ Biological Conservation 143, 1919–1927 (2010).
- 50. Schwartz, M. K., Luikart, G. & Waples, R. S. Genetic monitoring as a promising tool for
 conservation and management. *Trends in Ecology & Evolution* 22, 25–33 (2007).
- ⁶⁵¹ 51. Riitters, K., Wickham, J., O'Neill, R., Jones, B. & Smith, E. Global-scale patterns of forest
 ⁶⁵² fragmentation. *Conservation Ecology* 4 (2000).
- ⁶⁵³ 52. Keyghobadi, N., Roland, J., Matter, S. & Strobeck, C. Among- and within-patch compo ⁶⁵⁴ nents of genetic diversity respond at different rates to habitat fragmentation: an empirical
 ⁶⁵⁵ demonstration. Proceedings of the Royal Society B: Biological Sciences 272, 553–560 (2005).
- Allendorf, F. W. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biology 5, 181–190 (1986).
- Templeton, A. R. Population genetics and microevolutionary theory (John Wiley & Sons,
 2021).
- 55. Templeton, A. R. Mechanisms of speciation-a population genetic approach. Annual Review
 of Ecology and Systematics, 23-48 (1981).
- ⁶⁶² 56. Andren, H. Effects of habitat fragmentation on birds and mammals in landscapes with different
 ⁶⁶³ proportions of suitable habitat: a review. *Oikos*, 355–366 (1994).
- ⁶⁶⁴ 57. Andren, H. Population responses to habitat fragmentation: statistical power and the random
 ⁶⁶⁵ sample hypothesis. *Oikos*, 235–242 (1996).
- 58. Pardini, R., Bueno, A., Gardner, T., Prado, P. & Metzger, J. Beyond the fragmentation
 threshold hypothesis: Regime shifts in biodiversity across fragmented landscapes. *PLOS One*5 (2010).
- ⁶⁶⁹ 59. Hoffmann, A. A. & Willi, Y. Detecting genetic responses to environmental change. Nature
 ⁶⁷⁰ Reviews Genetics 9, 421–432 (2008).

- ⁶⁷¹ 60. Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proceedings
 ⁶⁷² of the National Academy of Sciences 105, 14308–14312 (2008).
- 673 61. Epperson, B. K. Geographical genetics (MPB-38) (Princeton University Press, 2003).
- 674 62. Crispo, E. & Hendry, A. Does time since colonization influence isolation by distance? A meta-675 analysis. *Conservation Genetics* **6**, 665–682 (2005).
- 676 63. Jenkins, D. G. *et al.* A meta-analysis of isolation by distance: relic or reference standard for 677 landscape genetics? *Ecography* **33**, 315–320 (2010).
- 678 64. Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R. & Waits, L. P. Landscape genetics:
 679 where are we now? *Molecular Ecology* 19, 3496–3514 (2010).
- 65. Ramachandran, S. *et al.* Support from the relationship of genetic and geographic distance in
 human populations for a serial founder effect originating in Africa. *Proceedings of the National Academy of Sciences* 102, 15942–15947 (2005).
- 66. Gómez-Fernández, A., Alcocer, I. & Matesanz, S. Does higher connectivity lead to higher genetic diversity? Effects of habitat fragmentation on genetic variation and population structure
 in a gypsophile. Conservation Genetics 17, 631–641 (2016).
- 67. Wasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J. & Landguth, E. L. Population
 connectivity and genetic diversity of American marten (*Martes americana*) in the United
 States northern Rocky Mountains in a climate change context. Conservation Genetics 14,
 529–541 (2013).
- 68. Jangjoo, M., Matter, S. F., Roland, J. & Keyghobadi, N. Connectivity rescues genetic diversity
 after a demographic bottleneck in a butterfly population network. *Proceedings of the National Academy of Sciences* 113, 10914–10919 (2016).
- 693 69. Kool, J. T., Moilanen, A. & Treml, E. A. Population connectivity: recent advances and new 694 perspectives. Landscape Ecology 28, 165–185 (2013).
- ⁶⁹⁵ 70. Crow, J. F. & Aoki, K. Group selection for a polygenic behavioral trait: estimating the degree
 ⁶⁹⁶ of population subdivision. *Proceedings of the National Academy of Sciences* 81, 6073–6077
 ⁶⁹⁷ (1984).
- Varvio, S.-L., Chakraborty, R. & Nei, M. Genetic variation in subdivided populations and
 conservation genetics. *Heredity* 57, 189–198 (1986).
- 700 72. Barthélemy, M. Spatial networks. *Physics Reports* **499**, 1–101 (2011).
- 701 73. Penrose, M. Random geometric graphs (OUP Oxford, 2003).
- 702 74. Marsh, L. K. The nature of fragmentation in Primates in fragments: Ecology and conservation
 703 (Springer, 2003), 1–10.
- ⁷⁰⁴ 75. Erdős, P., Rényi, A., et al. On the evolution of random graphs. Publications of the Mathemat ⁷⁰⁵ ical Institute of the Hungarian Academy of Sciences 5, 17–60 (1960).

- 706 76. Sen, P., Banerjee, K. & Biswas, T. Phase transitions in a network with a range-dependent
 707 connection probability. *Physical Review E* 66, 037102 (2002).
- 708 77. Newman, M. E. & Watts, D. J. Scaling and percolation in the small-world network model.
 709 Physical Review E 60, 7332 (1999).
- 710 78. Eppstein, D. Finding the k shortest paths. SIAM Journal on Computing 28, 652–673 (1998).
- 711 79. Noh, J. D. & Rieger, H. Random walks on complex networks. *Physical Review Letters* 92, 118701 (2004).