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SI Text
S1 Proof of Lemma 1
We introduce auxiliary nodes to prove Lemma 1. A description of these auxiliary nodes is given in the caption of
Figure S1. The location of these auxiliary nodes is determined by the corresponding coloring ψe assigned to each edge
in the seedbank genealogy g.
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Figure S1. Example of an edge e = {vr, vs} with one or more dormant segments. The black and green lines represent the
active and dormant states, respectively. (A) An edge with a single dormant segment defined by two type-change events described by
ψe. Here, vr, vs ∈ S ∪ C, and let wp, wq be the auxiliary type-change nodes corresponding to transitions from active to dormant
(a → d) and dormant to active (d → a), respectively. The total length of the active state is ta = t1 + t2 = (1 − λ)te, and the
total length of the dormant state is td = λte. (B) An edge with a single dormant segment defined by a single type-change event
(again, captured by the corresponding ψe). In this case, edge e is a terminal branch with vr ∈ S being a sample from the dormant
population, and the auxiliary single type-change node wq represents the d → a transition. (C) An edge with multiple dormant
segments. When edge e contains n+ 1 dormant segments, wℓ denotes the d→ a auxiliary type-change node terminating the n-th
dormant segment, and wp represents the a → d auxiliary type-change node initiating the n + 1-th dormant segment. A further
auxiliary node x ̸∈ S ∪ C, placed at the midpoint between wℓ and wp, partitions edge e into two sub-edges: ϵ1 = ⟨vr, x⟩ with
length tϵ1 containing n dormant segments, and ϵ2 = ⟨x, vs⟩ with length tϵ2 containing one dormant segment.

Lemma S1 (Transition probability matrix for an edge with a single dormant segment). Let Πa and Πd be the
time-reversible substitution rate matrices for the active and dormant populations, respectively, with Πd = αΠa and
α ∈ [0, 1], as defined in Section 3.2. Consider an edge e = ⟨vr, vs⟩ ∈ E of length te, where vr, vs ∈ S ∪ C, which
contains a single dormant segment occupying a fraction λ of its length. The transition probability matrix Pe(te) for
edge e is given by:

Pe(te) = eΠa[1−(1−α)λ]te . (S1)

Proof. We first consider the case where the single dormant segment is defined by two auxiliary type-change events at
nodes wp, wq , as shown in Figure S1(A). The transition probability matrix along the edge e is computed as:

Pe(te) = eΠat2eΠdtdeΠat1 = eΠa(t1+t2+αtd) = eΠa(ta+αtd) = eΠa[1−(1−α)λ]te ,

where ta = t1 + t2 = (1− λ)te, and td = λte by definition. The second equality follows from Πd = αΠa and the
property eXeY = eX+Y for any commuting matrices X and Y.

When the single dormant segment is defined by a single type-change event at auxiliary node wq, with edge e as a
terminal branch containing a dormant sample vr ∈ S, as shown in Figure S1(B), the transition probability matrix along
the edge e is computed as:

Pe(te) = eΠataeΠdtd = eΠa(ta+αtd) = eΠa[1−(1−α)λ]te .

Thus, the overall transition probability matrix for edge e containing a single dormant segment is Pe(te) = eΠa[1−(1−α)λ]te .
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Lemma S2 (Transition probability matrix for an edge with multiple dormant segments). Consider an edge e =
⟨vr, vs⟩ ∈ E of length te, where vr, vs ∈ S ∪ C, containing multiple dormant segments that occupy a total fraction λ
of its length. The transition probability matrix Pe(te) for edge e is given by:

Pe(te) = eΠa[1−(1−α)λ]te . (S2)

Proof. We proceed by induction on the number of dormant segments n in edge e. In the base case of a single dormant
segment (n = 1), the lemma holds as established in Lemma S1. Assuming that the lemma holds for an edge with n ≥ 1
dormant segments, we consider an edge e = ⟨vr, vs⟩ with n+ 1 dormant segments and prove that the lemma remains
valid in this case.

Let wℓ denote the auxiliary node corresponding to the d→ a type-change at the end of the n-th dormant segment, and
let wp, wq be the auxiliary type-change nodes defining the (n+ 1)-th dormant segment; see Figure S1(C). We partition
edge e into two sub-edges by introducing a further auxiliary node x ̸∈ S ∪ C at the midpoint of the active portion
between wℓ and wp, as shown in Figure S1(C). Let ϵ1 = ⟨vr, x⟩ and ϵ2 = ⟨x, vs⟩, with respective lengths tϵ1 and tϵ2 .
Then, ϵ1 contains n dormant segments, and ϵ2 contains one dormant segment. Define λ1 and λ2 as the fractions of the
total dormant lengths within ϵ1 and ϵ2, respectively.

The transition probability matrix for edge e with n+ 1 dormant segment is:

Pe(te) = Pϵ2(tϵ2)Pϵ1(tϵ1)

= eΠa[1−(1−α)λ2]tϵ2 eΠa[1−(1−α)λ1]tϵ1

= eΠa[(tϵ1+tϵ2 )−(1−α)(λ1tϵ1+λ2tϵ2 )]

= eΠa[1−(1−α)λ]te ,

where the second equality follows from Lemma S1 and the induction hypothesis for n. The third equality uses

te = tϵ1 + tϵ2 and λ =
λ1tϵ1 + λ2tϵ2

te
, the total fraction of dormant length within edge e. This completes the proof.

By Lemma S2, the effective substitution rate matrix for any edge ei ∈ E, i ∈ {1, . . . , 2n − 2}, of the seedbank
genealogy can be defined as:

Πeff
i = [1− (1− α)λi]Πa.

S2 Proof of Theorem 2
Overview of Felsenstein’s pruning algorithm: We consider a time-reversible continuous-time Markov chain (CTMC)
model for molecular evolution [1, 2], characterized by the substitution rate matrix Π. Let Σ be the state space for
sequence data, represented as a totally ordered set under lexicographic order; for example, for nucleotide sequences,
Σ = {A,C,G, T} with the total order A < C < G < T . We denote the j-th element of Σ as σj . As defined in
Section 3.1, S represents the n leaf nodes from the sampling events, and C denotes the n − 1 internal (ancestral)
nodes from the coalescent events between active lineages, including the root node. Let L(i)

vk (σj) denote the conditional
likelihood of the subtree rooted at node vk ∈ S ∪ C, given that vk is in state σj ∈ Σ at site i, where k ∈ [|S ∪ C|] and
j ∈ [|Σ|].

Felsenstein’s pruning algorithm [3] is a dynamic programming method for computing L(i)
vk (σj) by traversing tree nodes

in a specific order, such as post-order traversal. Let Y (i)
vk represent the state at site i of the observed sequence data at

leaf node vk. The initialization condition for each leaf node vk ∈ S, with k = 1, . . . , n, is given by:

L(i)
vk
(σj) =

{
1 if σj = Y

(i)
vk

0 if σj ̸= Y
(i)
vk

. (S3)
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At each internal node vk ∈ C for k = n+ 1, . . . , 2n− 1, the conditional likelihood L(i)
vk (σq) is computed recursively

using its left (vℓ) and right (vr) direct child nodes:

L(i)
vk
(σq) =

 |Σ|∑
j=1

P (σj | σq, tℓ)L(i)
vℓ
(σj)

×

 |Σ|∑
j=1

P (σj | σq, tr)L(i)
vr (σj)

 , (S4)

where tℓ and tr are the branch lengths from node vk to its child nodes vℓ and vr, respectively. P (σj | σq, t) denotes the
transition probability from state σq to state σj over time t, computed under the substitution model Π. The algorithm
terminates at the root, computing the overall likelihood of the tree for the sequence data Y(i) at site i:

P (Y(i) | g,Π) =

|Σ|∑
j=1

fσj
L
(i)
root(σj), (S5)

where fσj denotes the stationary frequency of state σj .

Proof of Theorem 2:

Proof. We prove the theorem by induction on the nodes vk ∈ S ∪C. The base case for leaf nodes vk ∈ S follows from
Eq. S3. Assuming the theorem holds for all descendants of an internal node vk ∈ C, we proceed to prove it for vk.
Let vℓ and vr be the left and right child nodes of vk, respectively, with corresponding edges eℓ = {vk, vℓ} ∈ E and
er = {vk, vr} ∈ E, and edge lengths tℓ and tr. Denote L

(i)
vk as a column vector of length |Σ|, where its j-th element is

L
(i)
vk (σj). We express the transition probability matrices as left stochastic matrices. The likelihood at node vk is then

computed recursively using Eq. S4:

L(i)
vk

=
(
Peℓ

(tℓ)L
(i)
vℓ

)
⊙

(
Per(tr)L

(i)
vr

)
,

where ⊙ represents the Hadamard product. By Lemma S2 and the induction hypothesis, L(i)
vk can be computed using

the branch-specific effective rate matrices. By induction through post-order traversal of the seedbank genealogy g,
this dependence extends to the conditional likelihoods at all nodes of g. Thus, the overall likelihood of the seedbank
genealogy P (Y | g,Πa,Πd), as given by Eq. S5, is equal to the phylogenetic likelihood of g̃ with branch-specific
effective substitution rate matrices as defined in Lemma 1. It therefore depends only on the substitution model
parameters {α, µa,Q}, edge lengths ℓ, and dormant state proportions λ, confirming the main theorem.

S3 MCMC transition kernels
We provide a description of the Metropolis-Hastings proposals used within the MCMC framework, along with their
corresponding acceptance probabilities. The description includes both established moves from the literature, as well as
modifications necessary for accommodating the seedbank coalescent.

The scheme followed is the reversible jump MCMC [4], which is standard in the structured coalescent literature (e.g.,
[5, 6]). Suppose that at iteration t the chain is at a generic state s. The next state is determined as follows. A move
(operator) k is chosen with probability r(k) from a discrete set of operators. Then, a random number u is sampled from
a density g. The proposed state of the chain s∗ is constructed via a suitable deterministic invertible map h such that
(s∗, u∗) = h(s, u) where u∗ are random numbers generated by an operator k∗ from a known density g∗, required to
reverse the move from (s∗, u∗) to (s, u). Following Green [4], the move is accepted with probability:

α(s, s∗) = min

{
1,
π(s∗)

π(s)

r(k∗)g∗(u∗)

r(k)g(u)

∣∣∣∣∂(s∗, u∗)∂(s, u)

∣∣∣∣} ,
where π denotes the target distribution, and the last term represents the Jacobian of the transformation h. While the
acceptance ratio is generally used for a trans-dimensional move, it is valid in general (see Green [4] for more details)
and is fully equivalent to a standard Metropolis–Hastings ratio when there is no trans-dimensional move.
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In what follows, we describe the one-step-ahead proposal of our operator. For simplicity, we omit the time index on
the variables. In line with standard practice in coalescent-based inference, we refer to the following quantity as the
Hastings-Green ratio:

HGR(s, s∗) =
r(k∗)g∗(u∗)

r(k)g(u)

∣∣∣∣∂(s∗, u∗)∂(s, u)

∣∣∣∣,
where the numerator is the transition probability from (s∗, u∗) to (s, u), and the denominator corresponds to the reversed
move.

S3.1 Parameter scaler [ScaleOperator]
This is the widely used parameter operator in base BEAST2, simply called ScaleOperator. We apply it to c, K, θ,
µa, α, and Q. For a generic state s, draw x ∼ U(f, 1/f), with f ∈ (0, 1), and propose s∗ = s x. The HGR is 1/x. The
proposal corresponds to a random walk on a log transformation of the parameter.

S3.2 Seedbank tree scaler [SeedbankTreeScale]
SeedbankTreeScale corresponds to the MultiTypeTreeScaler of [5, 6]. The full genealogy is rescaled,
which involves rescaling the node heights of all coalescent and type-transition nodes. The scaling factor is the same for
the whole genealogy.

Draw a multiplier x uniformly at random from [f, 1f ). Then, iterate through all the internal coalescent and transition
nodes and scale the corresponding height. The proposal may be invalid (child older than parent), in which case, the
move is rejected. Otherwise, the HGR is x|C|+|M|

x2 .

S3.3 Node-shift retype [NodeShiftRetype]
NodeShiftRetype is one of the two-step operators proposed by [6]. Let up, ul, and ur be the parent, left child, and
right child of a node u respectively.

First, select random coalescent node i ∈ C. If i is the root, the new root height is found by rescaling the difference
between t(i) and max(t(il), t(ir)). Then propose new state ψ∗

e ∈M for the edges ⟨il, i⟩ and ⟨ir, i⟩ by sampling from
the endpoint conditioned CTMC ψe(t). If i is not the root, disconnect i from ip, il, and ir, and then uniformly draw a
new location for i from [max(t(il), t(ir)), t(ip)]. Then, propose new ψ∗

e ∈M for the edges ⟨il, i⟩, ⟨ir, i⟩, and ⟨i, ip⟩.
In the last step, update λ∗ and ρ∗ by updating all edges involved in the proposal.

Let E∗ ⊂ E denote the subset of the edges involved in the proposal, and let s represent all variables involved in the
proposal. The HGR is

HGR(s, s∗) =



∏
e∈E∗ P (ψe)∏
e∈E∗ P (ψ∗

e)

1

x
if i is the root

∏
e∈E∗ P (ψe)∏
e∈E∗ P (ψ∗

e)
otherwise

, (S6)

whereP (ψe) andP (ψ∗
e) are computed following the description of the uniformization-based scheme in Section 3.4.1.

S3.4 Modified subtree exchange with coloring [TypedSubtreeExchange]
TypedSubtreeExchange is one of the two-step operators proposed by [6]. Let up and us be the parent and sibling
of a node u, respectively. Randomly select samples or coalescent nodes i and j, where j is not Sib(i, g̃). If t(i) > t(jp)
or t(j) > t(ip), reject the proposal. Swap i and j, and then propose a new state ψ∗

e ∈M for the edges ⟨i, ip⟩ and ⟨j, jp⟩.
Update λ∗ and ρ∗ by updating all edges involved in the proposal. The move is accepted with probability:

HGR(s, s∗) =

∏
e∈E∗ P (ψe)∏
e∈E∗ P (ψ∗

e)
.

S3.5 Modified Wilson-Balding with coloring [TypedWilsonBalding]
TypedWilsonBalding is an operator proposed by [6]. It can only be used on trees with more than three leaf nodes.
Let up, ugp, and us be the parent, grandparent, and sibling of a node u, respectively. Randomly select a sample or
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coalescent node i such that i is not the root and ip is not the root. Randomly pick another sample or coalescent node, j,
such that t(jp) > t(j). Additionally, j is not the root, jp is not the root, and j is not ip or is.

Detach i from the tree, replacing ⟨is, ip⟩ and ⟨ip, igp⟩ with ⟨is, igp⟩. Now select a new location uniformly at random from
[max(t(i), t(j)), t(jp)] to reattach i, replacing ⟨j, jp⟩ with ⟨j, ip⟩ and ⟨ip, jp⟩. If the type of ⟨j, jp⟩ at the attachment
point is dormant, then reject the proposal. Finally, propose a new state ψ∗

e ∈M for the edge ⟨i, ip⟩, and update λ∗ and
ρ∗ for all edges involved in the proposal. The move is accepted with probability:

HGR(s, s∗) =

∏
e∈E∗ P (ψe)∏
e∈E∗ P (ψ∗

e)
× t(jp)−max(t(i), t(j))

t(igp)−max(t(i), t(is))
.

S3.6 Edge type change [EdgeRecolor]
EdgeRecolor is an operator specific to the seedbank coalescent. It selects an edge at random and samples a new col-
oring using the uniformization-based scheme described in Section 3.4.1. The move is accepted with probability:

HGR(s, s∗) =
P (ψe)

P (ψ∗
e)
.
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SI Tables

Table S1. Summary of notations and definitions.

Symbol Definition
a Active type
d Dormant type

P{a,d}
k Space of typed partition of [k], where each block is labeled as either a or d
Na Effective population size of active population
Nd Effective population size of dormant population
c Transition rate from active to dormant
K Relative size of active population compared to dormant population such that Na = KNd

S Set of leaf nodes from sampling events
C Set of coalescent nodes
n Number of samples
nc Number of coalescent events
V Set of coalescent and sampling nodes
E Set of edges defined by nodes in V
ψei Transitions (a→ d or d→ a) occurring on edge ei ∈ E, along with their event times
M Set of sample paths of type-change processes: {ψe1 , . . . , ψe2n−2

}
u Vector of ordered event times measured in calendar time units
g Seedbank genealogy: g = (V,E,u,M)
g̃ Reduced genealogy: g̃ = (V,E,u)
nda Number of dormant-to-active type-changes in g
nad Number of active-to-dormant type-changes in g
θ Scaling factor converting coalescent time units to calendar time, θ = Naτg
τg Generation time in calendar units
∆i Length of time interval (ui, ui+1)
ki,a Number of active lineages during time interval (ui, ui+1)
ki,d Number of dormant lineages during time interval (ui, ui+1)
µa Mutation rate per site per unit calendar time of active population
µd Mutation rate per site per unit calendar time of dormant population
Q Normalized base substitution rate matrix
Πa Substitution rate matrix for active population
Πd Substitution rate matrix for dormant population
α Ratio of mutation rates between dormant and active populations
ℓi Edge length of edge ei
λi Proportion of dormancy in edge ei
ξi Branch-specific scaling factor, ξi := 1− (1− α)λi
ρi Branch-rate multiplier, ρi := ξiµa

Πeff
i Branch-specific effective substitution rate matrix of edge ei
Y Aligned molecular sequences, along with their sampling times and states
κ transition/transversion bias
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Table S2. Comparison of the analytic first and second moments of tree height between seedbank coalescent and two-population
structured coalescent models. (A) Analytic expectation of tree height, E[TMRCA]. (B) Analytic variance of tree height, Var[TMRCA].
The analytic moments for the seedbank coalescent were computed by numerically evaluating the recursive formula in Blath et al. [7].
The effective population size of the active population (Na) was fixed at 1, and the seedbank model parameters c and K were varied
as specified in the table. The closed-form expressions for the structured coalescent are provided in Wakeley [8]. For fair comparisons
between the two models, analogous population parameters were matched: in the two-population structured coalescent, the effective
populations sizes were set to N1 = Na and N2 = Na/K, corresponding to the active and dormant populations in the seedbank
coalescent, respectively.

(A) Analytic expectation of tree height, E[TMRCA].
n = 2 n = 10 n = 100

c K Seedbank Structured Seedbank Structured Seedbank Structured

0.1 0.1 121 4.182 322.7 10.12 530.9 15.12
0.5 0.1 121 6.909 281.4 15.17 378.2 19.19
1.0 0.1 121 8.273 259.4 17.07 321.4 20.29
5.0 0.1 121 10.26 228.3 19.14 259.0 21.36

10.0 0.1 121 10.61 223.2 19.45 249.6 21.54

0.1 1.0 4 2.000 9.671 4.369 14.97 5.953
0.5 1.0 4 2.000 8.564 3.957 11.32 4.626
1.0 1.0 4 2.000 8.071 3.803 10.02 4.297
5.0 1.0 4 2.000 7.425 3.641 8.480 4.022

10.0 1.0 4 2.000 7.317 3.620 8.221 3.989

0.1 10.0 1.21 1.168 2.279 2.180 2.697 2.512
0.5 10.0 1.21 1.141 2.210 2.071 2.491 2.291
1.0 10.0 1.21 1.127 2.195 2.036 2.448 2.244
5.0 10.0 1.21 1.107 2.182 1.994 2.407 2.194

10.0 10.0 1.21 1.104 2.180 1.987 2.402 2.186

(B) Analytic variance of tree height, Var[TMRCA].
n = 2 n = 10 n = 100

c K Seedbank Structured Seedbank Structured Seedbank Structured

0.1 0.1 168600 30.71 397700 54.28 565800 60.98
0.5 0.1 45440 5.538 73000 4.214 75590 1.550
1.0 0.1 30040 2.982 40920 1.192 40990 0.108
5.0 0.1 17720 1.580 20930 0.026 20970 0.001

10.0 0.1 16180 1.492 18900 0.007 18920 0.0001

0.1 1.0 116.0 14.00 264.5 24.10 380.4 27.47
0.5 1.0 36.00 6.000 55.82 5.900 59.91 3.301
1.0 1.0 26.00 5.000 34.95 3.765 35.72 0.735
5.0 1.0 18.00 4.200 21.36 0.910 21.42 0.001

10.0 1.0 17.00 4.100 19.91 0.458 19.95 0.0002

0.1 10.0 1.915 1.799 2.636 2.358 2.962 2.601
0.5 10.0 1.554 1.511 1.839 1.820 1.851 2.185
1.0 10.0 1.509 1.474 1.763 1.789 1.767 2.231
5.0 10.0 1.473 1.443 1.708 1.784 1.711 2.169

10.0 10.0 1.469 1.439 1.702 1.785 1.704 2.091
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Table S3. Comparison of analytic and MCMC-based estimates of the first and second moments of tree height. (A) Expectation
of tree height, E[TMRCA]. (B) Variance of tree height, Var[TMRCA]. This table compares the analytically derived the first and
second moments of the time to the most recent common ancestor (TMRCA) and the corresponding estimates from MCMC sampling
across various parameter configurations of the seedbank coalescent model. MCMC estimates are based on sampling from the prior
distribution of seedbank genealogies (Eq. 2), while the analytical values are from numerical evaluation of recursive formulas from
Blath et al. [7]. Three sample sizes, n = 2, 10, 100, were examined, with all samples originating from the active population, and
the seedbank model parameters (c and K) were varied systematically. For n = 2, a single node-shift retype (NSR) operator or a
combination of seedbank tree scaler (TS) and edge-recolor (RC) operators was employed. For larger sample sizes, n = 10 and
n = 100, a complete set of operators was used.

(A) Expectation of tree height, E[TMRCA].
n = 2 n = 10 n = 100

c K Analytic NSR TS+RC Analytic MCMC Analytic MCMC

0.1 0.1 121 116.1 127.7 322.7 316.5 530.9 530.9
0.5 0.1 121 120.2 118.4 281.4 279.3 378.2 383.0
1.0 0.1 121 117.8 123.3 259.4 258.7 321.4 324.1
5.0 0.1 121 123.8 120.2 228.3 230.2 259.0 260.8
10.0 0.1 121 120.5 112.7 223.2 223.8 249.6 248.3

0.1 1.0 4 4.172 3.867 9.671 9.784 14.97 16.12
0.5 1.0 4 3.957 4.025 8.564 8.612 11.32 11.32
1.0 1.0 4 4.072 4.023 8.071 8.090 10.02 10.03
5.0 1.0 4 4.015 4.018 7.425 7.407 8.480 8.701
10.0 1.0 4 3.991 3.994 7.317 7.341 8.221 8.192

0.1 10.0 1.21 1.218 1.205 2.279 2.282 2.697 2.746
0.5 10.0 1.21 1.211 1.227 2.210 2.206 2.491 2.502
1.0 10.0 1.21 1.212 1.202 2.195 2.187 2.448 2.454
5.0 10.0 1.21 1.211 1.209 2.182 2.168 2.407 2.400
10.0 10.0 1.21 1.206 1.205 2.180 2.153 2.402 2.406

(B) Variance of tree height, Var[TMRCA].
n = 2 n = 10 n = 100

c K Analytic NSR TS+RC Analytic MCMC Analytic MCMC

0.1 0.1 168600 165800 173900 397700 375000 565800 603100
0.5 0.1 45440 42890 45160 73000 75530 75590 68450
1.0 0.1 30040 28820 30810 40920 41990 40990 46180
5.0 0.1 17720 18730 17040 20930 21050 20970 21710

10.0 0.1 16180 16190 16730 18900 19490 18920 18510

0.1 1.0 116.0 122.9 104.5 264.5 270.6 380.4 425.8
0.5 1.0 36.00 35.97 35.06 55.82 56.78 59.91 59.74
1.0 1.0 26.00 26.97 25.11 34.95 34.70 35.72 35.10
5.0 1.0 18.00 17.73 18.48 21.36 20.77 21.42 23.72

10.0 1.0 17.00 16.56 17.05 19.91 20.09 19.95 19.66

0.1 10.0 1.915 1.901 1.905 2.636 2.599 2.962 3.115
0.5 10.0 1.554 1.532 1.600 1.839 1.803 1.851 1.840
1.0 10.0 1.509 1.534 1.516 1.763 1.703 1.767 1.734
5.0 10.0 1.473 1.499 1.497 1.708 1.671 1.711 1.679

10.0 10.0 1.469 1.480 1.461 1.702 1.626 1.704 1.631
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Table S4. Comparison of analytic and MCMC-based estimates of the expected total lengths of active lineages (E[L(a)]) and
dormant lineages (E[L(d)]). Each cell contains two rows: the first row presents E[L(a)], and the second row shows E[L(d)]. The
table structure mirrors that of Table S3.

n = 2 n = 10 n = 100
c K Analytic NSR TS+RC Analytic MCMC Analytic MCMC

0.1 0.1
22.00 21.43 23.06 61.15 60.49 105.3 112.2
220.0 210.8 232.3 611.5 600.2 1053 1132

0.5 0.1
22.00 21.84 21.50 59.27 58.87 92.93 94.63
220.0 218.5 215.4 592.7 587.7 929.3 950.2

1.0 0.1
22.00 21.37 22.34 58.81 58.51 90.37 90.53
220.0 214.1 224.3 588.1 585.5 903.7 905.2

5.0 0.1
22.00 22.55 21.87 60.08 60.43 95.54 95.69
220.0 225.0 218.4 600.8 604.2 955.4 956.5

10.0 0.1
22.00 21.92 22.31 60.88 61.01 99.92 99.54
220.0 219.1 223.1 608.8 609.8 999.2 995.8

0.1 1.0
4.000 4.087 3.942 11.23 11.31 19.98 20.80
4.000 4.257 3.793 11.23 11.32 19.98 21.40

0.5 1.0
4.000 3.974 4.010 11.14 11.15 19.38 19.32
4.000 3.94 4.039 11.14 11.21 19.37 19.22

1.0 1.0
4.000 4.081 4.014 11.15 11.18 19.40 19.48
4.000 4.064 4.032 11.15 11.17 19.40 19.48

5.0 1.0
4.000 4.027 4.022 11.24 11.20 19.92 20.11
4.000 4.003 4.014 11.24 11.19 19.92 20.14

10.0 1.0
4.000 3.997 3.999 11.27 11.33 20.16 20.10
4.000 3.985 3.989 11.27 11.34 20.16 20.13

0.1 10.0
2.200 2.221 2.194 6.221 6.234 11.36 11.45
0.2200 0.2145 0.2153 0.6221 0.6301 1.136 1.160

0.5 10.0
2.200 2.202 2.230 6.222 6.215 11.37 11.39
0.2200 0.2202 0.2234 0.6222 0.6165 1.137 1.145

1.0 10.0
2.200 2.201 2.188 6.222 6.210 11.38 11.41
0.2200 0.2224 0.2162 0.6222 0.6182 1.138 1.147

5.0 10.0
2.200 2.202 2.197 6.223 6.211 11.39 11.36
0.2200 0.2196 0.2202 0.6223 0.6198 1.139 1.131

10.0 10.0
2.200 2.193 2.190 6.224 6.174 11.39 11.40
0.2200 0.2192 0.2190 0.6224 0.6181 1.139 1.141

9/15



Table S5. Comparison of analytic and MCMC-based estimates of the variance of total lengths of active lineages (Var[L(a)])
and dormant lineages (Var[L(d)]). Each cell contains two rows: the first row presents Var[L(a)], and the second row shows
Var[L(d)]. The table structure mirrors that of Table S3.

n = 2 n = 10 n = 100
c K Analytic NSR TS+RC Analytic MCMC Analytic MCMC

0.1 0.1
4484 4518 4584 11080 10700 16490 17310

572400 561200 590600 1450000 1368000 2225000 2378000

0.5 0.1
1284 1212 1255 2424 2493 2746 2569

153200 144600 152500 308400 319300 374400 351100

1.0 0.1
884.0 851.4 898.0 1500 1528 1631 1818

100800 96690 103500 182900 186700 212100 235100

5.0 0.1
564.0 598.2 544.1 879.8 876.0 942.2 957.0
58880 62220 56590 94760 94740 104900 107600

10.0 0.1
524.0 524.1 542.5 811.8 839.3 866.7 853.3
53640 53660 55440 84620 86980 92290 91320

0.1 1.0
56.00 58.46 52.32 128.7 131.1 187.1 210.7
216.0 230.6 192.3 574.0 572.4 957.3 1018

0.5 1.0
24.00 24.01 23.43 42.78 43.04 49.85 49.76
56.00 56.01 54.60 130.4 133.4 194.6 189.8

1.0 1.0
20.00 21.07 19.58 33.32 33.30 37.47 37.55
36.00 36.87 34.44 77.21 76.00 110.1 109.8

5.0 1.0
16.80 16.57 17.28 26.35 25.83 28.55 30.47
20.00 19.68 20.52 35.28 34.55 43.86 46.46

10.0 1.0
16.40 15.99 16.42 25.50 25.90 27.40 26.87
18.00 17.52 18.10 29.99 30.62 35.24 35.05

0.1 10.0
5.240 5.297 5.300 8.538 8.406 9.748 10.16

0.5724 0.5352 0.5455 1.554 1.580 2.765 2.829

0.5 10.0
4.920 4.839 5.068 7.667 7.607 8.278 8.272

0.1532 0.1541 0.1606 0.3705 0.3578 0.6170 0.6164

1.0 10.0
4.880 4.939 4.902 7.560 7.391 8.098 8.034

0.1008 0.1056 0.1022 0.2226 0.2167 0.3486 0.3591

5.0 10.0
4.848 4.931 4.929 7.474 7.348 7.951 7.969

0.0589 0.0605 0.0594 0.1042 0.1031 0.1332 0.1312

10.0 10.0
4.844 4.874 4.828 7.463 7.197 7.932 7.618

0.0536 0.0549 0.0523 0.0893 0.0871 0.1062 0.1026
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Table S6. Coverage, relative bias, and relative RMSE of the posterior estimates for key model parameters, based on 100
replicate simulations where only model parameters are inferred given the true reduced (uncolored) genealogy. Table design
follows Table 1 but excludes TMRCA because it is not applicable in this scenario.

Isochronous sampling Serial sampling
K = 1 K = 10 K = 1 K = 10

α = 0.1 α = 0.5 α = 0.99 α = 0.1 α = 0.5 α = 0.99 α = 0.1 α = 0.5 α = 0.99 α = 0.1 α = 0.5 α = 0.99
Coverage Coverage

c 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00
K 0.99 1.00 0.99 1.00 1.00 1.00 0.97 0.98 1.00 1.00 1.00 1.00
θ 0.93 0.98 0.99 0.94 0.97 0.95 0.98 0.98 1.00 0.97 0.95 0.98
κ 0.93 0.93 0.97 0.92 0.96 0.97 0.90 0.94 0.93 0.96 0.99 0.94
α N/A N/A 0.92 0.98 1.00 0.99 1.00 1.00
µa N/A N/A 0.92 0.97 0.93 0.94 0.94 0.94

Relative bias Relative bias
c 0.020 0.061 0.13 0.10 0.15 0.14 0.043 0.083 0.17 0.053 0.034 0.13
K 0.19 0.13 0.14 0.28 0.36 0.40 0.090 0.075 0.10 0.19 0.24 0.38
θ 0.040 0.055 0.055 0.022 0.043 0.039 0.028 0.027 0.12 0.057 0.032 0.074
κ 0.0015 0.0019 0.00019 −0.0034 0.0066 0.0065 −0.00030 0.0062 −0.0020 0.0041 0.00084 −0.0012
α N/A N/A −0.071 −0.014 −0.025 −0.023 −0.013 −0.077
µa N/A N/A 0.0077 0.0042 0.012 −0.0074 −0.0020 0.0087

Relative RMSE Relative RMSE
c 0.43 0.43 0.59 0.57 0.62 0.62 0.35 0.39 0.57 0.49 0.51 0.60
K 0.57 0.49 0.60 0.70 0.78 0.84 0.38 0.38 0.44 0.50 0.61 0.80
θ 0.30 0.29 0.33 0.28 0.28 0.30 0.30 0.32 0.45 0.29 0.30 0.32
κ 0.060 0.049 0.042 0.073 0.075 0.073 0.041 0.035 0.031 0.045 0.042 0.043
α N/A N/A 0.50 0.096 0.039 0.86 0.20 0.11
µa N/A N/A 0.039 0.036 0.026 0.035 0.032 0.026
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Table S7. Coverage, relative bias, and relative RMSE of the posterior estimates for mutation model parameters and tree
height, based on 100 replicate simulations, jointly inferring the genealogy and the model parameters under the misspecified
Kingman coalescent model. The table presents results for mutation model parameters and tree height. Seedbank-specific parameters
without direct counterparts in the Kingman coalescent are excluded from inference. The synthetic datasets used here are identical
to those in Tables 1. (A) Isochronous sampling (Scenario 1). The mutation rate was not inferred but held constant at either the
active-state mutation rate µa (left) of the seedbank model or the tree-wide effective mutation rate µeff (right), computed as the
edge-weighted average of ρi (Eq. 3). (B) Serial sampling (Scenario 2). Because the Kingman coalescent does not distinguish
between mutation rates of active and dormant states, a single mutation rate (µ) is inferred and compared to the true µa. For the case
with K = 1 and α = 0.1, results (marked “–”) are excluded for comparisons with Table 1.

(A) Isochronous sampling.
µ = µa µ = µeff

K = 1 K = 10 K = 1 K = 10
α = 0.1 α = 0.5 α = 0.99 α = 0.1 α = 0.5 α = 0.99 α = 0.1 α = 0.5 α = 0.99 α = 0.1 α = 0.5 α = 0.99
Coverage Coverage

κ 0.95 0.99 0.96 0.95 0.93 0.95 0.94 0.97 0.95 0.94 0.93 0.95
TMRCA 0.03 0.01 0.92 0.33 0.56 0.96 0.23 0.42 0.94 0.82 0.89 0.96

Relative bias Relative bias
κ 0.0074 0.00039 −0.0024 0.0091 0.0015 0.0011 0.0071 0.00036 −0.0022 0.0085 0.0018 0.0012

TMRCA −0.43 −0.26 −0.0042 −0.086 −0.057 −0.0027 −0.087 −0.038 0.00047 −0.010 −0.012 −0.0019
Relative RMSE Relative RMSE

κ 0.066 0.049 0.044 0.077 0.075 0.073 0.066 0.049 0.044 0.077 0.075 0.073
TMRCA 0.45 0.27 0.026 0.11 0.076 0.046 0.12 0.061 0.026 0.055 0.051 0.046

(B) Serial sampling.
K = 1 K = 10

α = 0.1 α = 0.5 α = 0.99 α = 0.1 α = 0.5 α = 0.99
Coverage

κ – 0.97 0.98 0.97 0.96 0.97
TMRCA – 0.49 0.96 0.60 0.85 0.95
µ – 0.0 0.96 0.12 0.35 0.97

Relative bias
κ – 0.0027 −0.0015 0.0036 0.003 0.0011

TMRCA – 0.0086 0.0014 0.00089 0.0016 −0.0023
µ – −0.28 −0.0043 −0.097 −0.055 0.0043

Relative RMSE
κ – 0.033 0.029 0.043 0.043 0.043

TMRCA – 0.067 0.024 0.029 0.020 0.016
µ – 0.29 0.027 0.11 0.066 0.030
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Table S8. Coverage, relative bias, and relative RMSE of the posterior estimates for mutation model parameters and tree
height, based on 100 replicate simulations inferred under the misspecified Kingman coalescent model, with either the
mutation rate or the genealogy fixed (but not both). (A) Serial sampling with a fixed mutation rate. The mutation rate was held
constant at either the active-state mutation rate µa (left) of the seedbank model or the tree-wide effective mutation rate µeff (right),
calculated as the edge-weighted average of ρi (Eq. 3). (B) Serial sampling with a fixed genealogy. Model parameters are inferred
given the true reduced (uncolored) genealogy. The synthetic datasets used here are identical to those in Tables 1.

(A) Serial sampling, fixed mutation rate.
µ = µa µ = µeff

K = 1 K = 10 K = 1 K = 10
α = 0.1 α = 0.5 α = 0.99 α = 0.1 α = 0.5 α = 0.99 α = 0.1 α = 0.5 α = 0.99 α = 0.1 α = 0.5 α = 0.99
Coverage Coverage

κ – 0.97 0.97 0.97 0.96 0.97 – 0.97 0.97 0.97 0.96 0.96
TMRCA – 0.020 0.96 0.37 0.58 0.95 – 0.45 0.97 0.73 0.88 0.95

Relative bias Relative bias
κ – 0.0057 −0.0015 0.0041 0.0034 0.0010 – 0.0028 −0.0015 0.0034 0.0031 0.0010

TMRCA – −0.18 −0.0026 −0.028 −0.015 −0.00094 – −0.013 0.0012 0.000059 0.0017 −0.00064
Relative RMSE Relative RMSE

κ – 0.033 0.029 0.043 0.043 0.043 – 0.033 0.029 0.043 0.043 0.043
TMRCA – 0.19 0.014 0.037 0.022 0.013 – 0.037 0.014 0.022 0.015 0.013

(B) Serial sampling, fixed genealogy.
K = 1 K = 10

α = 0.1 α = 0.5 α = 0.99 α = 0.1 α = 0.5 α = 0.99
Coverage

κ – 0.97 0.98 0.97 0.96 0.95
µ – 0.0 0.96 0.0 0.09 0.94

Relative bias
κ – 0.0046 −0.0015 0.0036 0.0032 0.0012
µ – −0.26 −0.0042 −0.10 −0.055 −0.00017

Relative RMSE
κ – 0.033 0.029 0.043 0.043 0.043
µ – 0.26 0.014 0.10 0.060 0.021
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Figure S2. Example of the reduced genealogy derived from the seedbank genealogy shown in Figure 1.
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