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Abstract

The Neighbor-Joining (NJ) algorithm is a widely used method for constructing
phylogenetic trees from genetic distances. While NJ is known to perform well
with tree-like data, its behavior under admixture remains understudied. In this
work, we present a geometric framework for analyzing the NJ algorithm under
a linear admixture model. We focus on three key properties related to clustering
order, distance, and topological path length in the resulting NJ trees involving five
taxa. Our approach leverages polyhedral geometry to define NJ cones, which cor-
respond to distinct cherry-picking orders and partition the space of dissimilarity
vectors. We project dissimilarity vectors with admixture into a lower-dimensional
space without admixture, defining polyhedral regions induced by NJ cones that
satisfy specified properties. We compute the exact probabilities that these prop-
erties hold by directly calculating the volumes of the induced NJ cones and
compare them with Monte Carlo integration and standard NJ simulation meth-
ods. Our results show that the property on clustering order is always satisfied,
while the other properties are highly probable but depend on the admixture frac-
tion. We also prove that certain induced NJ cones have zero volume, indicating
that the corresponding NJ tree topologies are infeasible under admixture. We
have implemented our methods as a publicly available module NeighborJoining
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within Macaulay2, providing an efficient tool for analyzing NJ cones and their
properties. This work provides new insights into the geometric structure inher-
ent to the NJ algorithm in the presence of admixture, identifying the conditions
under which admixture influences the resulting phylogenetic trees.

Keywords: Admixture, Neighbor-joining, Phylogenetics, Polyhedral geometry

1 Introduction

The Neighbor-Joining (NJ) algorithm [1] is a widely used distance-based method for
inferring phylogenetic trees. Given a pairwise distance matrix, or equivalently a dis-
similarity vector, NJ constructs an unrooted binary tree by iteratively merging pairs
of nodes according to a specific criterion. When the input distances are additive [2] or
nearly additive [3], NJ accurately reconstructs the underlying true tree [4, 5]. However,
distances derived from empirical data often deviate from additivity, especially in cases
of non-tree-like evolution, such as admixture events resulting from recent gene flow
between distinct source populations. Admixed populations, which result from recent
mixtures of distinct source populations, often exhibit unique behaviors in NJ trees.
Empirical studies across diverse species and genetic datasets [6–12] have demonstrated
that an admixed population appears as a short branch along the path connecting its
two source populations in an inferred NJ tree. However, the rigorous theoretical under-
standing of these observed behaviors, including the exact probabilities and the specific
conditions under which such patterns arise in NJ trees, remains poorly understood.

Under two-way linear admixture, Kopelman et al. [13] formally defined three key
properties that characterize the clustering order, branch lengths, and topological struc-
ture of the NJ tree in the presence of admixture: (1) antecedence of clustering, where
the admixed population clusters with one of its source populations before the two
source populations cluster; (2) intermediacy of distances, where the distance between
the admixed population and each source population is less than the distance between
the two source populations; and (3) intermediacy of topological path lengths, where
the number of edges between the admixed population and each source population
is less than or equal to the number of edges separating the two source populations.
Kim et al. [14] further investigated these properties through systematic simulations,
estimating the approximate probabilities that a random admixed dissimilarity vector
satisfies each property. They concluded that, although these properties can be vio-
lated, the presence of admixture leads to the properties being satisfied more frequently
than expected by chance.

In this work, we introduce a formal geometric framework for studying the behav-
ior of the NJ algorithm under a two-way linear admixture model, with a special
focus on the case of five taxa. Unlike previous approaches that rely on empirical or
simulation-based methods, our framework enables exact computation of the proba-
bilities that NJ trees satisfy specified properties involving admixture. Our method
leverages NJ cones [15, 16], each corresponding to a distinct cherry-picking order,
partitioning the space of dissimilarity vectors. By projecting admixed dissimilarity
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vectors onto a lower-dimensional space without admixture, we define the polyhedral
structure induced by the NJ cones. The volumes of these induced NJ cones provide a
direct measure of the probability that a random admixed dissimilarity vector satisfies
the three specified properties. We have implemented our computational framework
as a module, NeighborJoining, within Macaulay2 [17] for public use. Our geometric
approach extends the theoretical understanding of the NJ algorithm, offering deeper
insights into the structural constraints on the NJ trees imposed by admixture.

2 Background and definitions

Table 1: Summary of notations and definitions. This table lists the key
symbols and terms used in this work, with references to their formal definitions.

Symbol Description Reference

Dn Dissimilarity matrix Definition 1

d(n) Dissimilarity vector Definition 1

A(n) A-matrix Definition 2

R(n) R-matrix Definition 3
ℓij Minimum path length between nodes Definition 4
δ Tree metric Definition 5
CO NJ cone Definition 6
MCO NJ cone matrix Definition 6
ψσ Assignment map Definition 8
Πσ Linear map from dissimilarity vectors to tree metrics Definition 9
U Tree metric entry comparison matrix Definition 10

C̃O Property 2 cone Definition 11
MC̃O

Property 2 cone matrix Definition 11

ια Embedding map for dissimilarity vector with admixture Definition 12
πα(C) Induced cone Definition 13

2.1 Neighbor-joining algorithm

The NJ algorithm [1] is an iterative procedure for constructing a phylogenetic tree
from an input dissimilarity map of samples. At each iteration of the NJ algorithm, a
pair of nodes is selected and merged into a new internal node, which then replaces the
original pair. This iterative process continues until an unrooted binary tree, with the
samples as tips, is fully constructed. In this work, we restrict our attention to unrooted
labeled binary trees, hereafter referred to simply as trees.

The pair selection process (“cherry picking”) in the NJ algorithm corresponds to
the formation of half-spaces, which define NJ cones [15]. Each distinct cherry-picking
sequence corresponds to an NJ cone. As a result, the output of the NJ algorithm—a
specific cherry-picking order for each input dissimilarity map—partitions the space of
dissimilarity maps into their respective NJ cones. This section provides an overview
of the NJ algorithm within the framework of polyhedral geometry.
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2.1.1 Dissimilarity map

The NJ algorithm, as a distance-based method, requires a dissimilarity matrix as
input. Each entry in this matrix represents the pairwise dissimilarity between samples,
defined by a dissimilarity map on the sample space. This map satisfies the proper-
ties of non-negativity, identity, and symmetry, while potentially relaxing the triangle
inequality, thus operating as a semi-metric.

Definition 1 (Dissimilarity matrix and dissimilarity vector) We denote the total
number of initial samples by N and let n ∈ [N ] represent the number of taxa remaining at a
given iteration. Here, [N ] denotes the set {1, . . . , N} for a positive integer N . The index set

corresponding to these n taxa is denoted by I(n), where n = |I(n)|. The dissimilarity matrix
Dn for n taxa is an n × n symmetric matrix with a zero diagonal, where each off-diagonal
entry represents the dissimilarity between a pair of taxa.

We define the dissimilarity vector d(n) for n taxa as a column vector of length
(n
2

)
,

composed of the lower-triangular entries of the dissimilarity matrix Dn, arranged in lexico-
graphical order based on the taxon indices. The entry in the i-th row and j-th column (i > j)

of Dn is bijectively mapped to the
(
(i−1)(i−2)

2 + j
)
-th position in d(n) [16].

For example, when n = 5 with I(n) = [5],

D5 =


0 d

(5)
21 d

(5)
31 d

(5)
41 d

(5)
51

d
(5)
21 0 d

(5)
41 d

(5)
42 d

(5)
52

d
(5)
31 d

(5)
32 0 d

(5)
43 d

(5)
53

d
(5)
41 d

(5)
42 d

(5)
43 0 d

(5)
54

d
(5)
51 d

(5)
52 d

(5)
53 d

(5)
54 0

 ,

and

d(5) =
[
d
(5)
21 , d

(5)
31 , d

(5)
32 , d

(5)
41 , d

(5)
42 , d

(5)
43 , d

(5)
51 , d

(5)
52 , d

(5)
53 , d

(5)
54

]T
.

2.1.2 The Q-criterion

At each step of the NJ algorithm, a pair of taxa is selected based on the Q-criterion,

a linear transformation mapping each entry d
(n)
ab of the dissimilarity vector to its

corresponding Q-value qab, as defined below.

qab = (n− 2)d
(n)
ab −

∑
k∈I(n)

d
(n)
ak −

∑
k∈I(n)

d
(n)
kb .

This linear transformation can be represented by a
(
n
2

)
×

(
n
2

)
matrix, which we refer

to as the A-matrix.

Definition 2 (A-matrix) Let the indices i and j correspond to the pairs of taxa (a, b) and

(c, d), respectively. The A-matrix A(n) is defined as a
(n
2

)
×

(n
2

)
matrix, where each entry
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A
(n)
ij is given by:

A
(n)
ij =


n− 4 i = j,

−1 i ̸= j and {a, b} ∩ {c, d} ̸= ∅,
0 otherwise.

For example, when n = 5,

A(5) =

21 31 32 41 42 43 51 52 53 54



21 1 −1 −1 −1 −1 0 −1 −1 0 0
31 −1 1 −1 −1 0 −1 −1 0 −1 0
32 −1 −1 1 0 −1 −1 0 −1 −1 0
41 −1 −1 0 1 −1 −1 −1 0 0 −1
42 −1 0 −1 −1 1 −1 0 −1 0 −1
43 0 −1 −1 −1 −1 1 0 0 −1 −1
51 −1 −1 0 −1 0 0 1 −1 −1 −1
52 −1 0 −1 0 −1 0 −1 1 −1 −1
53 0 −1 −1 0 0 −1 −1 −1 1 −1
54 0 0 0 −1 −1 −1 −1 −1 −1 1

. (1)

We define the Q-vector q(n) as q(n) = A(n)d(n). The pair of taxa to be merged in the
current iteration corresponds to the index of the Q-vector with the minimum value:
argmin
i∈[(n2)]

qi.

2.1.3 Updating the dissimilarity vector and tree construction

After selecting a pair of taxa for merging, a new node representing the pair is created.
The newly created nodes are indexed as N + 1, N + 2, . . . , 2N − 2, with node N + i
introduced in the i-th iteration. The original pair is removed from the set of taxa in
the subsequent iteration, decreasing the number of taxa to be processed by one. The
dissimilarity vector d(n) is then updated to d(n−1) by removing the entries associated
with the original pair and introducing new entries that represent the dissimilarities
between the newly created node and all remaining taxa.

Formally, let a, b ∈ I(n) be the pair of taxa selected at a given step, with u repre-
senting the newly created node for the pair. Then, I(n−1) = {u} ∪ I(n) \ {a, b}, and
the entries of the updated dissimilarity vector d(n−1) are defined as follows:

d(n−1)
ux =

1

2
(d(n)ax + d

(n)
bx − d

(n)
ab ), (2)

d(n−1)
xy = d(n)xy , (3)

where x, y ∈ I(n) \ {a, b}. This process of updating the dissimilarity vector at each
step of the algorithm can be formalized as a linear transformation [16].
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Definition 3 (R-matrix) We define the R-matrix as a
(n−1

2

)
×

(n
2

)
matrix R(n), such

that d(n−1) = R(n)d(n). Let kcd and kef denote the positions of the pairs (c, d) and (e, f),

respectively, in the lexicographically ordered set {(x, y) | x, y ∈ [5], x > y}. The entry R(n)
kcdkef

in the kcd row and the kef column is defined as:

R
(n)
kcdkef

=


1 {c, d} = {e, f} and {e, f} ∩ {a, b} = ∅,
1
2 if |{c, d} ∩ [N ]| = 1 with γ = {c, d} ∩ [N ] and if {e, f} = γ ∪ {λ} with λ ∈ {a, b},

− 1
2 {c, d} = {a, b} and |{e, f} ∩ {a, b}| = 1,

0 otherwise.

For example, if we start with n = 5, and taxa 2 and 3 are selected in the first iteration,
the resulting dissimilarity vector d(4) is:

d(4) =
[
d
(4)
41 , d

(4)
51 , d

(4)
54 , d

(4)
61 , d

(4)
64 , d

(4)
65

]T
,

and the matrix R(5) that updates the dissimilarity vector from d(5) to d(4) is given by:

R(5) =


0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
1
2

1
2 − 1

2 0 0 0 0 0 0 0
0 0 − 1

2 0 1
2

1
2 0 0 0 0

0 0 − 1
2 0 0 0 0 1

2
1
2 0

 .

After merging taxa a and b into a newly created node u, the node pairs (a, u) and
(b, u) define edges eau and ebu, respectively, on the inferred NJ tree, with their lengths
βau and βbu given by:

βau =
1

2
d
(n)
ab +

1

2(n− 2)

∑
k∈I(n)

(d
(n)
ak − d

(n)
bk ), (4)

βbu = d
(n)
ab − βau. (5)

The final NJ tree with N leaves is obtained after N − 2 iterations. To quantify
distances within this tree, we introduce the tree metric (or additive metric) [2, 5] that
defines the pairwise distances between the leaves.

Definition 4 (Minimum path length between nodes) Let V = [2N − 2] denote the
set of nodes in the final NJ tree. We define the function ℓ : V × V → R≥0 as the map that
assigns to each pair of nodes in the tree the minimum path length between them. Specifically,
for any two nodes i, j ∈ V , ℓ(i, j)—denoted by ℓij—represents the sum of edge lengths along
the shortest path connecting i and j within the tree. If i and j are adjacent, ℓij is precisely
βij , the length of the edge directly connecting them.
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Definition 5 (Tree metric) By restricting ℓ to the set of leaves [N ], we define the tree

metric δ as a column vector of length
(N
2

)
, where each entry δij corresponds to the minimum

path length ℓij between leaves i, j ∈ [N ] of the tree.

2.1.4 NJ cones

In Sections 2.1.2 and 2.1.3, we formalized the NJ algorithm as a sequence of lin-
ear transformations applied to the input dissimilarity vector, with the cherry-picking
order determined by the Q-criterion, represented as a set of linear inequalities at
each iteration. This process defines a geometric structure known as NJ cones [15],
where each cone corresponds to a unique NJ tree, thereby partitioning the space of
input dissimilarity vectors. This section provides a mathematical description of this
structure.

Let a and b be the pair of taxa selected at a given step with n taxa remaining, and
let i ∈

[(
n
2

)]
denote the index corresponding to the position of the pair (a, b) within

d(n). Denote by e
(n)
k the k-th standard basis column vector in R(

n
2), with a 1 in the

k-th position and 0 in all other positions. Then,

(a, b) = i = argmin
k∈[(n2)]

{qk} = argmin
k∈[(n2)]

(e
(n)T
k A(n)d(n)) = argmin

k∈[(n2)]
(A(n)e

(n)
k · d(n)),

where the final step follows directly from the symmetry of the A-matrix.
Since i corresponds to the index of the minimum Q-criterion value, the following

inequality holds for all j ∈
[(

n
2

)]
:

A(n)e
(n)
i · d(n) ≤ A(n)e

(n)
j · d(n). (6)

For given i, and for each j ∈ I(n), Eq. 6 defines a half-space in the space of input

dissimilarity vectors R(
n
2)

≥0 :

Hij =

{
d(n) ∈ R(

n
2)

≥0

∣∣∣ A(n)
(
e
(n)
i − e

(n)
j

)
· d(n) ≤ 0

}
. (7)

If an input dissimilarity vector d(n) satisfies the inequality in Eq. 7, it lies within
the corresponding half-space Hij . When i = j, the inequality holds trivially, resulting
in

(
n
2

)
− 1 non-trivial half-spaces for each cherry-picking among n nodes. Thus, the

i-th pair is selected if and only if d(n) lies within the intersection of all non-trivial
half-spaces generated in that step, formally expressed as

d(n) ∈
⋂
j ̸=i

Hij .
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The total number of half-spaces required to reconstruct a tree with N samples is
obtained by summing the number of half-spaces generated at each step of the algo-

rithm:
∑N

k=4

((
k
2

)
− 1

)
. Note that at the iteration where n = 3, all entries of the

Q-vector are identical because A(3) has rank 1 by construction:

A(3) =

[ ]−1 −1 −1
−1 −1 −1
−1 −1 −1

. (8)

Therefore, only the iterations preceding n = 3 contribute to the total set of half-spaces.
We now formally define the NJ cone using these half-planes.

Definition 6 (NJ cone) Let O = (o1, o2, . . . , oN−3) represent a cherry-picking order on
a set of N taxa, specifying the sequential selection of N − 3 cherries, with ok denoting the
k-th cherry. At each iteration k, define nk = N − k + 1 as the number of taxa remaining at
the beginning of the iteration, and let ik ∈

[(nk
2

)]
be the index of ok in the corresponding

Q-vector. For each jk ∈
[(nk

2

)]
with jk ̸= ik, define the row vector hikjk of length

(N
2

)
,

constructed from the comparison of the Q-values qik and qjk as follows:

hikjk =
(
e
(nk)
ik

− e
(nk)
jk

)T
A(nk)

(
R(nk+1) · · ·R(N)

)
.

At iteration k, there are
(nk
2

)
− 1 hyperplanes, defined by the vectors hikjk , for each jk ∈[(nk

2

)]
\ {ik}. We define the reindexing map ϕk : {ik} ×

[(nk
2

)]
\ {ik} → {k} ×

[(nk
2

)
− 1

]
,

which reassigns the indices ik and jk as follows:

ϕk(ik, jk) =

{
(k, jk) if jk < ik,

(k, jk − 1) if jk > ik.
(9)

This reindexes each hyperplane hikjk to hkm, where m ∈
[(nk

2

)
− 1

]
.

We define the NJ cone matrix MCO as a
(∑N

x=4

((x
2

)
− 1

))
×

(N
2

)
matrix, where rows

correspond to hyperplanes associated with the cherry-picking order O:

MCO =
[
h11, . . . ,h1((N2 )−1)

,h21, . . . ,h2((N−1
2 )−1)

, . . . ,h(N−3)1, . . . ,h(N−3)5

]T
.

The NJ cone CO associated with the cherry-picking order O is then defined as:

CO =

{
d(N) ∈ R(

N
2 )

≥0

∣∣∣ MCOd(N) ≤ 0

}
.

In other words, the NJ cone CO represents the region in the space of dissimi-
larity vectors where the NJ algorithm, following the order O, produces a unique
unrooted labeled binary tree topology, distinguishing reflection-symmetric topologies
by assigning them to distinct cones (Table 2).

Each input dissimilarity vector d(N) either lies strictly within the interior of a
single NJ cone or on a boundary shared by multiple NJ cones. The latter occurs if
and only if there exists an NJ cone CO and a cherry-picking iteration k such that, at
the k-th iteration, a row vector hikjk in MCO satisfies:

hT
ikjk

· d(N) = 0. (10)
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Eq. 10 implies that the entries qik and qjk of the Q-vector at the k-th iteration are both
the minimum among all entries of the Q-vector at that iteration. So the NJ algorithm
cannot distinguish picking the cherry ik or the cherry jk at the k-th iteration. Let mk

denote the number of cherries whose Q-vector entries have the same minimum value
at the k-th iteration, i.e., there are mk pairs of nodes satisfying Eq. 10. The cherry-
picking order for d(N) can then select any of these mk cherries, as their Q-vector
entries are all minimum.

Since each iteration determines a single cherry, and there are N −3 iterations that
define the half-spaces bounding an NJ cone, the total number of distinct NJ cones
containing d(N) on the boundary is given by multiplying the number of equivalent
choices at each iteration, adjusting for the three pairs of identical rows in the A-matrix
at the (N − 3)-th iteration (Eq. 8):

(mN−3 − 2)

N−4∏
k=1

mk.

For example, for N = 5, if d(5) has m1 = 5 and m2 = 3, it lies on the boundary shared
by (m2 − 2)m1 = (3− 2)× (5− 0) = 5 distinct NJ cones.

2.1.5 The equivalence relation among cherry-picking orders

While each cherry-picking order belongs to an NJ cone, a single NJ cone can correspond
to multiple cherry-picking orders due to the structural properties of the A-matrix
(Definition 2). If two rows of A(n) are identical, the corresponding Q-vector entries
are equal for any input dissimilarity vector (Section 2.1.2). In this case, the NJ algo-
rithm arbitrarily selects a cherry from node pairs with the minimum Q-value. This
multiplicity induces an equivalence class of cherry-picking orders. The proof of this
equivalence relation is straightforward and is therefore omitted.

Definition 7 (Equivalence class of cherry-picking orders) Two cherry-picking orders
are equivalent if and only if, at every iteration of the NJ algorithm, the corresponding rows
of the A-matrix are identical.

For N = 5, the set of cherry-picking orders forms thirty distinct equivalence classes,
with each class containing six orders [15]. This results from the combinatorial proper-
ties of tree topologies under the NJ algorithm. There is one unrooted unlabeled binary
tree topology, which can be labeled to form (2N − 5)!! = 15 unrooted labeled binary
tree topologies. However, the cherry-picking order introduces asymmetry relative to
the central edge, thereby doubling the total number of unique NJ cones to thirty.
Thus, each NJ cone corresponds to a unique unrooted labeled binary tree topology
that accounts for asymmetry with respect to the central node, resulting in a total of
thirty distinct NJ cones (Table 2).

The equivalence of six cherry-picking orders per class is due to the ties in the
Q-criterion, as defined by the matrices A(4) and A(3). At the first iteration, the Q-
vector is given by q(5) = A(5)d(5). Since the rows of A(5) are distinct (Eq. 1), no two
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cherries are guaranteed to have the same Q-value at this step. Assuming, without loss
of generality, that nodes 4 and 5 are selected as a cherry in the first step, with node
6 added, the Q-vector at the second step is computed as q(4) = A(4)d(4), where A(4)

is given by:

A(4) =

21 31 32 61 62 63


21 0 −1 −1 −1 −1 0
31 −1 0 −1 −1 0 −1
32 −1 −1 0 0 −1 −1
61 −1 −1 0 0 −1 −1
62 −1 0 −1 −1 0 −1
63 0 −1 −1 −1 −1 0

. (11)

Regardless of the cherry selected in the first step, A(4) contains three pairs of identical
rows, leading to ties in the Q-values. In the third and final cherry-picking step, A(3)

has identical rows (Eq. 8), resulting in ties across all node pairs. These ties in both
the second and third steps establish the equivalence of six cherry-picking orders.

This equivalence allows for a systematic representation of each NJ cone for N = 5
based on the first two cherries. Since each NJ cone corresponds to six equivalent cherry-
picking orders, any of these orders can be selected to represent the cone. Among these
six, three have their first two cherries composed solely of the original taxa indices
{1, . . . , 5}. We represent the cone by the cherry-picking order where these cherries
consist exclusively of the original indices. Let (a, b) and (c, d) be the first two cherries
of an NJ cone, where a, b, c, d ∈ [5]. The NJ cone is then denoted by C(a,b)(c,d). This
notation will be used to represent NJ cones with N = 5 throughout the remainder of
this work.

2.2 Populations with admixture

Consider a set of N populations, indexed by I(N) = [N ] and labeled {t1, t2, . . . , tN}.
Let tN represent an admixed population from a two-way admixture between source
populations t1 and t2. Define the admixture fraction α ∈ (0, 1) as the proportion
of contribution from source population t1 to the admixed population tN , with the
remaining 1 − α representing the contribution from the other source population t2.
We employ the linear admixture model as described in Kopelman et al. [13] and Kim
et al. [14], where the pairwise genetic distances between the admixed population tN
and other populations are expressed as a linear combination of the distances involving
the source populations. For each i ∈ [N ], these distances are given by:

d
(N)
Ni = αd

(N)
1i + (1− α)d

(N)
2i . (12)

The corresponding dissimilarity matrix D(N), incorporating the admixed population
tN is given by:

D(N) =

10





0 d
(N−1)
21 · · · d

(N−1)
(N−1)1 (1− α)d

(N−1)
21

d
(N−1)
21 0 · · · d

(N−1)
(N−1)2 αd

(N−1)
21

...
...

. . .
...

...

d
(N−1)
(N−1)1 d

(N−1)
(N−1)2 · · · 0 αd

(N−1)
(N−1)1 + (1− α)d

(N−1)
(N−1)2

(1− α)d
(N−1)
21 αd

(N−1)
21 · · · αd(N−1)

(N−1)1 + (1− α)d
(N−1)
(N−1)2 0


.

(13)

We assume all off-diagonal elements in D(N) are strictly positive.

2.2.1 Property 1: antecedence of clustering

In the NJ algorithm, Property 1 is satisfied if the admixed taxon clusters with one
of the source taxa before the two source taxa are clustered together. Formally, let Γi

denote the clade containing taxon i, and (Γi,Γj) represent the agglomeration of two
clades. The clustering order satisfies Property 1 in the last two of the following three
cases:

((Γ1,Γ2),ΓN ), ((Γ1,ΓN ),Γ2), ((Γ2,ΓN ),Γ1).

For example, when N = 5, Property 1 is satisfied if source taxon 1 and admixed taxon
5 are clustered in the first step, forming a new node 6. In the second step, node 6
clusters with taxon 2, such that the admixed taxon 5 is clustered with source taxon 1
before the source taxa 1 and 2 are joined. Conversely, Property 1 is violated if source
taxa 1 and 2 are clustered in the first step.

2.2.2 Property 2: intermediacy of distances

Property 2 states that the distances on the inferred NJ tree (the tree metric; Defini-
tion 5) between the admixed taxon and each source taxon are less than or equal to
the distance between the two source taxa. Since we are working within the framework
of closed polyhedra, the strict inequality “<” from Kopelman et al. [13] is replaced
by “≤”. This adjustment does not affect the probability of satisfying or violating the
property, since the boundary of a polyhedron has measure zero. Thus, the property
requires:

δ1N ≤ δ12, δ2N ≤ δ12.

2.2.3 Property 3: intermediacy of topological path lengths

Unlike Property 2, which focuses on branch lengths, Property 3 concerns the topo-
logical structure of the NJ tree, which is determined by the cherry-picking order.
This property requires that the number of edges along the shortest path between the
admixed taxon and each source taxon be less than or equal to the number of edges
along the shortest path between the two source taxa. Formally, let τij denote the num-
ber of edges on the shortest path between taxa i and j. Property 3 is then expressed
as:

τ1N ≤ τ12, τ2N ≤ τ12.
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3 Methods

Our objective is to compute the probability that a random dissimilarity vector with
admixture produces an NJ tree satisfying the three properties defined in Section 2.2.
Given that NJ cones partition the space of dissimilarity vectors (Section 2.1.4), asso-
ciating each NJ cone with these properties enables the identification of dissimilarity
vectors that satisfy them. In this section, we present a theoretical framework for
computing these probabilities based on the volumes of NJ cones, employing two
approaches: (1) Monte Carlo integration and (2) direct calculation. While the methods
are demonstrated for N = 5, they can be generalizable to cases where N > 5.

3.1 Classification of NJ cones based on the three properties

Properties 1 and 3 are topological, determined solely by the cherry-picking order asso-
ciated with the input dissimilarity vector. In contrast, Property 2 is not necessarily
satisfied across an entire NJ cone, as it further depends on the branch lengths of the
final NJ tree. In this section, we identify the NJ cones whose equivalence classes of
cherry-picking orders satisfy Property 1 and, separately, those that satisfy Property 3.
We also construct the cones associated with Property 2 using a linear transformation
that maps input dissimilarity vectors to the corresponding tree metrics in the final NJ
tree.

3.1.1 NJ cones satisfying Property 1 (antecedence of clustering)

We first identify NJ cones satisfying Property 1 for N = 5. Property 1 holds if the
admixed taxon clusters with either source taxon before the source taxa cluster with
each other. Within an equivalence class of an NJ cone, some cherry-picking orders may
satisfy Property 1, while others may not. We classify NJ cones into three categories
based on the number of cherry-picking orders in their equivalence class that satisfy
Property 1. Since ties in the Q-criterion define these equivalence classes, we deem an
NJ cone to satisfy Property 1 if at least one cherry-picking order within its equivalence
class satisfies it.

Type 1: NJ cones whose equivalence class consists entirely of
cherry-picking orders that satisfy Property 1.

If the first cherry in a cherry-picking order is either (5, 1) or (5, 2), where one taxon
is the source and the other the admixed taxon, the corresponding NJ cone satisfies
Property 1 and is classified as Type 1. In this case, the source and the admixed taxa
form a new node, which is subsequently clustered with the remaining source taxon.
Thus, all cherry-picking orders within this equivalence class have this property. For
example, the NJ cone corresponding to the NJ tree in Figure 1 is classified as a Type-
1 cone. All six cherry-picking orders associated with this NJ cone satisfy Property
1: (5, 1)(4, 2)(7, 6), (5, 1)(4, 2)(7, 3), (5, 1)(4, 2)(6, 3), (5, 1)(6, 3)(7, 4), (5, 1)(6, 3)(7, 2),
and (5, 1)(6, 3)(4, 2). The complete set of NJ trees corresponding to Type-1 cones is
provided in Figure B1.
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Fig. 1: Example NJ tree corresponding to a Type-1 NJ cone satisfying Property
1. The two trees shown are the same NJ tree but differ only in their internal node labels,
resulting from different cherry-picking orders within the same equivalence class. (A) Labeled
tree topology, with internal node labeled, from the cherry-picking orders: (5, 1)(4, 2)(7, 6),
(5, 1)(4, 2)(7, 3), and (5, 1)(4, 2)(6, 3). (B) Labeled tree topology, with internal node labeled,
from the cherry-picking orders (5, 1)(6, 3)(7, 4), (5, 1)(6, 3)(7, 2), and (5, 1)(6, 3)(4, 2).

Type 2: NJ cones whose equivalence class contains at least one, but not
all, cherry-picking orders that violate Property 1.

If an equivalence class of an NJ cone includes at least one cherry-picking order that
satisfies Property 1, but not all, we classify the NJ cone as Type 2 and satisfy-
ing Property 1. This convention is adopted because the equivalence class arises from
ties in the Q-criterion, where any tied pairs can be selected randomly. Thus, if any
cherry-picking order within the equivalence class satisfies Property 1, we designate the
entire NJ cone as satisfying Property 1. For example, the NJ cone corresponding to
the NJ tree in Figure 2 is a Type-2 cone. The cherry-picking order, (3, 1)(4, 2)(7, 6)
violates Property 1, whereas the other cherry-picking orders in the same equiva-
lence class—(3, 1)(4, 2)(6, 5), (3, 1)(4, 2)(7, 5), (3, 1)(6, 5)(7, 4), (3, 1)(6, 5)(7, 2), and
(3, 1)(6, 5)(4, 2)—satisfy it. The complete set of NJ trees corresponding to Type-2
cones is listed in Figure B2.
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Fig. 2: Example NJ tree corresponding to a Type-2 NJ cone satisfying Property
1. The two trees shown are the same NJ tree but differ only in their internal node labels,
resulting from different cherry-picking orders within the same equivalence class. (A) Labeled
tree topology, with internal node labeled, from the cherry-picking orders: (3, 1)(4, 2)(7, 6),
(3, 1)(4, 2)(6, 5), and (3, 1)(4, 2)(7, 5). (B) Labeled tree topology, with internal node labeled,
from the cherry-picking orders: (3, 1)(6, 5)(7, 4), (3, 1)(6, 5)(7, 2), and (3, 1)(6, 5)(4, 2).
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Type 3: NJ cones whose equivalence class consists entirely of
cherry-picking orders that violate Property 1.

If the first cherry in a cherry-picking order consists of the source taxa, (2, 1), the cor-
responding NJ cone is classified as Type 3 and necessarily violates Property 1. This
violation occurs because all cherry-picking orders in this equivalence class start with
(1, 2) as the first cherry, and the admixed taxon 5 can only join (2, 1) after these two
source taxa have already been clustered. For example, the NJ cone corresponding to
the NJ tree in Figure 3 is classified as a Type-3 cone. All six cherry-picking orders
associated with this NJ cone violate Property 1: (2, 1)(6, 5)(7, 3), (2, 1)(6, 5)(7, 4),
(2, 1)(6, 5)(4, 3), (2, 1)(4, 3)(6, 5), (2, 1)(4, 3)(7, 6), and (2, 1)(4, 3)(7, 5). The complete
set of NJ trees corresponding to Type-3 cones is provided in Figure B3.
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4

(B)

Fig. 3: Example NJ tree corresponding to a Type-3 NJ cone violating Property
1. The two trees shown are the same NJ tree but differ only in their internal node labels,
resulting from different cherry-picking orders within the same equivalence class. (A) Labeled
tree topology, with internal node labeled, from the cherry-picking orders: (2, 1)(6, 5)(7, 3),
(2, 1)(6, 5)(7, 4), and (2, 1)(6, 5)(4, 3). (B) Labeled tree topology, with internal node labeled,
from the cherry-picking orders: (2, 1)(4, 3)(6, 5), (2, 1)(4, 3)(7, 6), and (2, 1)(4, 3)(7, 5).

3.1.2 NJ cones satisfying Property 3 (intermediacy of path length)

Property 3 applies solely to the labeled tree topology of the NJ tree. Since cherry-
picking orders determine the labeled tree topology of the final NJ tree, an input
dissimilarity vector satisfies this property if and only if it is contained within an
NJ cone whose corresponding labeled tree topology satisfies Property 3. Given that
all dissimilarity vectors within an NJ cone result in the same labeled tree topology,
distinguishing reflection symmetry, either all vectors in the cone satisfy Property 3 or
none do. There are sixteen NJ cones whose labeled tree topologies satisfy Property 3.
The complete set of trees corresponding to the NJ cones that do not satisfy Property
3 is presented in Figure B4.

3.1.3 Cones satisfying Property 2 (intermediacy of distances)

An NJ cone can contain both dissimilarity vectors that satisfy Property 2 and those
that do not. Therefore, an NJ cone cannot be strictly categorized as either fully satis-
fying or not satisfying Property 2. Instead, we identify the subset of each NJ cone that
satisfies Property 2 and compute its associated volume. To identify the subset of an NJ
cone composed exclusively of dissimilarity vectors satisfying Property 2, we must map
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each input dissimilarity vector d(5) to its corresponding tree metric δ, as Property 2
applies to the tree metric of the resulting NJ tree. In this section, we show that there
exists a linear transformation from an input dissimilarity vector to its corresponding
tree metric and identify cones associated with Property 2.

We first show that, for N = 5, the dissimilarity vector d(3), obtained after the
second cherry-picking step, equals the vector of the minimum path lengths between the
two remaining internal nodes and the remaining leaf node. Recall that every cherry-
picking order is equivalent to one where the first two cherries consist of the original
taxa {1, . . . , 5} (Section 2.1.5). Thus, we can assume the first cherry corresponds to
the leaves on the left side of the final NJ tree, and the second cherry to the right.
Under this assumption, the remaining nodes to be clustered are the two internal nodes
{6, 7}—formed after selecting the first two cherries—and the remaining taxon from
the original set.

Lemma 1 Given N = 5, let d(3) be the dissimilarity vector obtained after the second cherry-
picking step. Denote the unpaired original taxon as e, and the two newly created nodes as u
and v, respectively. The NJ tree restricted to these three nodes is shown in Figure 4. Then,
the following holds:

d
(3)
eu = ℓeu, d

(3)
ev = ℓev, d

(3)
uv = ℓuv.

wu v

e

Fig. 4:NJ tree restricted to the final three nodes for N = 5.Without loss of generality,
for N = 5, the first two cherries are assumed to be on opposite sides of the NJ tree. The figure
shows the remaining three nodes to be clustered after the first two cherry-picking steps.

Proof. With three taxa remaining, all the rows of A(3) are identical (Section 2.1.5), and
thus, any pair from the remaining cherries can be selected in the third cherry-picking
step. Without loss of generality, suppose the cherry chosen at the third cherry-picking
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step is (e, u). Then by Eqs. 2, 4, and 5, we have

βew =
1

2

(
d(3)eu + d(3)ev − d(3)uv

)
,

βuw =
1

2

(
d(3)eu − d(3)ev + d(3)uv

)
,

βvw =
1

2

(
d(3)ev + d(3)uv − d(3)eu

)
,

ℓeu = βew + βuw = d(3)eu ,

ℓev = βew + βvw = d(3)ev ,

ℓuv = βuw + βvw = d(3)uv .

(14)

The result also holds when the cherry chosen at the third iteration is either (e, v) or
(u, v); the same proof applies by permuting the node labels {e, u, v} accordingly.

We next construct a matrix that maps an input dissimilarity vector to its
corresponding tree metric.

Definition 8 (Assignment map) Let σ ∈ S5 be a permutation, where S5 is the symmetric
group on five elements. Consider the unrooted binary tree structure in Figure 5A, where the
set of leaves {a, b, c, d, e} represents the taxa, and {1, 2, 3, 4, 5} is the index set. Define the
initial assignment ψ0 : {a, b, c, d, e} → [5], where each taxon is mapped to its corresponding
index as follows:

ψ0(a) = 1, ψ0(b) = 2, ψ0(c) = 3, ψ0(d) = 4, ψ0(e) = 5.

An σ-assignment is defined as a permutation-induced reassignment of taxa on the tree
leaves via σ : [5] → [5]. The function ψσ = σ ◦ψ0 describes this reassignment according to σ,
such that for each i ∈ {a, b, c, d, e}, ψσ(i) = σ(ψ0(i)).

wu v

e
a

b

c

d

(A)

76 8

3
1

2

4

5

(B)

Fig. 5: Node labels for an unrooted binary tree for five leaves and their initial
assignment. (A) The NJ tree for N = 5 taxa is shown with leaf labels {a, b, c, d, e} and inter-
nal nodes {u,w, v}. The leaves {a, b, c, d, e} correspond to the taxa indexed by {1, 2, 3, 4, 5}.
The tree topology remains fixed, while the indices corresponding to each leaf label are per-
muted according to the σ-assignments. (B) The leaf labels {a, b, c, d, e} are mapped to the
taxa indices {1, 2, 3, 4, 5} via the initial assignment ψ0 (Definition 8). The internal nodes
u, v, and w are labeled as 6, 7, and 8, respectively, according to the cherry-picking order
(2, 1)(4, 3)(6, 5).
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Lemma 2 For a given leaf pair (ϵ, ζ) (ϵ > ζ) in the labeled tree topology under the initial

assignment (Figure 5B), we demonstrate that there exists a column vector ν(ϵζ) ∈ R10×1

such that the tree metric δϵζ is expressed as:

δϵζ = ν(ϵζ) · d(5),

i.e., the shortest path length between the leaves (ϵ, ζ) is a linear combination of the entries
of the initial dissimilarity vector.

Proof. By Definition 8, ψ0 defines the mapping from the leaves of the NJ tree to the
taxa indices. The internal nodes u, v, and w are assigned to the indices 6, 7, and 8,
respectively, under the assumption that the first cherry is (2, 1), the second cherry is
(4, 3), and the third cherry is (6, 5). This assumption holds because each equivalence
class of cherry-picking orders contains at least one order where the first and second
cherries consist solely of the original taxa (Section 2.1.5). Additionally, since all rows
of A(3) are identical, any remaining pair of nodes can be selected arbitrarily as the
third cherry. With this cherry-picking order, the labeled tree topology corresponding
to the initial assignment is shown in Figure 5B.

We classify the leaf pairs of the labeled tree topology under the initial assignment
into four types based on the structure of the edges along the minimum path between
each pair. Type 1 consists of pairs (3, 1), (4, 1), (4, 2), and (3, 2), where each minimum
path traverses one edge from the first cherry-picking step, one from the second, and
the edges e86 and e87. Type 2 includes pairs (5, 3) and (5, 4), where the minimum
paths involves edges e85, e87, and one edge from the second cherry-picking step. Type
3 includes pairs (5, 1) and (5, 2), whose minimum paths traverse edges e85, e86, and
one edge from the first cherry-picking step. Finally, Type 4 consists of pairs (2, 1) and
(4, 3), where the minimum path length between each pair equals their dissimilarity at
the start of the NJ algorithm.

The classification of leaf pairs serves the purpose of expressing the minimum path
length, equivalent to the tree metric between leaves, as a linear combination of the
entries in the input dissimilarity vector for the five taxa. Two leaf pairs are classified
under the same type if their respective linear combinations are related by a permuta-
tion of the indices. We claim that if the coefficient vector ν(ϵζ) is known for one leaf
pair of a given type, the coefficient vector for any other leaf pair of the same type can
be computed via a permutation matrix. This follows from the reasoning below.

Let (η, θ) (η > θ) be another leaf pair of the labeled tree topology with the initial
assignment, such that (η, θ) belongs to the same type as (ϵ, ζ). Define a permutation σ′

such that σ′(ϵ) = η, σ′(ζ) = θ, σ′(η) = ϵ, σ′(θ) = ζ, and σ′(χ) = χ for all χ ∈ [5] with
χ ̸= η, ζ, θ, ϵ. Let kij denote the position of the pair (i, j) ∈ {(x, y) | x, y ∈ [5], x > y}
in the lexicographical ordering. Let ν(ηθ) ∈ R10×1 be a column vector where each entry

ν
(ηθ)
kij

equals ν
(ϵζ)
kσ′(i)σ′(j)

. Let ρσ′ ∈ R10×10 denote the permutation matrix induced by

σ′, permuting the indices of ν(ϵζ). Then,

ν(ηθ) = ρσ′ν(ϵζ).

From the classification, leaf pairs of the same type share minimum paths with identical
edge compositions, including an equal number of edges from both the first and second
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cherry-picking steps, as well as edges not involved in either step. Since edges from
the same cherry-picking step correspond to the same number of unclustered nodes,
their lengths are determined by the same formula, differing only by a permutation of
the dissimilarity vector indices. This structural equivalence allows us to compute the
tree metric between (η, θ) by permuting the known coefficient vector associated with
another leaf pair of the same type. Therefore, δηθ is expressed as:

δηθ = ν(ηθ) · d(5) = (ρσ′ν(ϵζ)) · d(5).

We proceed by constructing ν(ϵζ) for a representative pair from each type.

The first type of pairs consist of (3, 1), (4, 1), (4, 2) and (3, 2).

For the first type, without loss of generality, we express δ31 in terms of the input
dissimilarity vector d(5):

δ31 = β61 + ℓ76 + β73 = β61 + d
(3)
76 + β73. (15)

The second step follows from Lemma 1. Using Eqs. 2–5, we compute each term
separately as follows:

β61 =
1

2
d
(5)
21 +

1

6

(
d
(5)
31 + d

(5)
41 + d

(5)
51 − d

(5)
32 − d

(5)
42 − d

(5)
52

)
, (16)

d
(3)
76 =

1

2

(
d
(4)
63 + d

(4)
64 − d

(5)
43

)
=

1

2

[
1

2

(
d
(5)
41 + d

(5)
42 − d

(5)
21

)
+

1

2

(
d
(5)
31 + d

(5)
32 − d

(5)
21

)
− d

(5)
43

]
=

1

4

(
−2d

(5)
21 + d

(5)
31 + d

(5)
41 + d

(5)
32 + d

(5)
42 − 2d

(5)
43

)
, (17)

β73 =
1

2
d
(5)
43 +

1

4

(
d
(4)
63 + d

(5)
53 − d

(4)
64 − d

(5)
54

)
=

1

2
d
(5)
43 +

1

4

[
1

2

(
d
(5)
31 + d

(5)
32 − d

(5)
21

)
+ d

(5)
53 − 1

2

(
d
(5)
41 + d

(5)
42 +−d(5)21

)
− d

(5)
54

]
=

1

8

(
d
(5)
31 + d

(5)
32 − d

(5)
41 − d

(5)
42 + 4d

(5)
43 + 2d

(5)
53 − 2d

(5)
54

)
. (18)

Substituting Eqs. 16–18 into Eq. 15 gives:

δ31 =
13

24
d
(5)
31 +

5

24
d
(5)
32 +

7

24
d
(5)
41 − 1

24
d
(5)
42 +

1

6
d
(5)
51 − 1

6
d
(5)
52 +

1

4
d
(5)
53 − 1

4
d
(5)
54

=

[
0,

13

24
,
5

24
,
7

24
,− 1

24
, 0,

1

6
,−1

6
,
1

4
,−1

4

]T
︸ ︷︷ ︸

ν(31)

· d(5). (19)
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The second type of pairs consist of (5, 3) and (5, 4).

For the second type, without loss of generality, we express δ53 in terms of the input
dissimilarity vector d(5):

δ53 = β73 + ℓ75 = β73 + d
(3)
75 . (20)

The second step follows from Lemma 1. Using Eqs. 2–5, we compute each term
separately as follows:

d
(3)
75 =

1

2

(
d
(4)
54 + d

(4)
53 − d

(4)
43

)
=

1

2

(
d
(5)
54 + d

(5)
53 − d

(5)
43

)
. (21)

By Eq. 18, we have:

β73 =
1

8

(
d
(5)
31 + d

(5)
32 − d

(5)
41 − d

(5)
42 + 4d

(5)
43 + 2d

(5)
53 − 2d

(5)
54

)
. (22)

Substituting Eqs. 21 and 22 into Eq. 20 gives:

δ53 =
1

8
d
(5)
31 +

1

8
d
(5)
32 − 1

8
d
(5)
41 − 1

8
d
(5)
42 +

3

4
d
(5)
53 +

1

4
d
(5)
54

=

[
0,

1

8
,
1

8
,−1

8
,−1

8
, 0, 0, 0,

3

4
,
1

4

]T
︸ ︷︷ ︸

ν(53)

· d(5). (23)

The third type of pairs consist of (5, 1) and (5, 2).

For the third type, without loss of generality, we express δ51 in terms of the input
dissimilarity vector d(5):

δ51 = β61 + ℓ65 = β61 + d
(3)
65 . (24)

The second step follows from Lemma 1. Using Eqs. 14 and 16, we compute each term
separately as follows:

β61 =
1

2
d
(5)
21 +

1

6

(
d
(5)
51 + d

(5)
31 + d541 − d

(5)
52 − d

(5)
32 − d

(5)
42

)
, (25)

d
(3)
65 = d

(4)
65 =

1

2

(
d
(5)
51 + d

(5)
52 − d

(5)
21

)
. (26)

Substituting Eqs. 25 and 26 into Eq. 24 gives:

δ51 =
1

6
d
(5)
31 − 1

6
d
(5)
32 +

1

6
d
(5)
41 − 1

6
d
(5)
42 +

2

3
d
(5)
51 +

1

3
d
(5)
52
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=

[
0,

1

6
,−1

6
,
1

6
,−1

6
, 0,

2

3
,
1

3
, 0, 0

]T
︸ ︷︷ ︸

ν(51)

· d(5). (27)

The fourth type of pairs consist of (2, 1) and (4, 3).

From Eq. 5, we have:

δ21 = β61 + β62 = d
(5)
21 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

T︸ ︷︷ ︸
ν(21)

· d(5),

δ43 = β73 + β74 = d
(5)
43 = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

T︸ ︷︷ ︸
ν(43)

· d(5).

Up to this point, the coefficient vector has been computed for at least one leaf
pair in each of the four types. Thus, the tree metric for any leaf pair in the labeled
topology, under the initial assignment, can be expressed as a linear combination of
the entries in the input dissimilarity vector.

From Eq. 19, the tree metrics for all leaf pairs belonging to the first type are given
as follows:

δ31 =

[
0,

13

24
,
5

24
,
7

24
,− 1

24
, 0,

1

6
,−1

6
,
1

4
,−1

4

]T
· d(5),

δ32 =

[
0,

5

24
,
13

24
,− 1

24
,
7

24
, 0,−1

6
,
1

6
,
1

4
,−1

4

]T
· d(5),

δ41 =

[
0,

7

24
,− 1

24
,
13

24
,
5

24
, 0,

1

6
,−1

6
,−1

4
,
1

4

]T
· d(5),

δ42 =

[
0,− 1

24
,
7

24
,
5

24
,
13

24
, 0,−1

6
,
1

6
,−1

4
,
1

4

]T
· d(5).

From Eq. 23, the tree metrics for all leaf pairs belonging to the second type are given
as follows:

δ53 =

[
0,

1

8
,
1

8
,−1

8
,−1

8
, 0, 0, 0,

3

4
,
1

4

]T
· d(5)

δ54 =

[
0,−1

8
,−1

8
,
1

8
,
1

8
, 0, 0, 0,

1

4
,
3

4

]T
· d(5)

From Eq. 27, the tree metrics for all leaf pairs belonging to the third type are given
as follows:

δ51 =

[
0,

1

6
,−1

6
,
1

6
,−1

6
, 0,

2

3
,
1

3
, 0, 0

]T
· d(5)

δ52 =

[
0,−1

6
,
1

6
,−1

6
,
1

6
, 0,

1

3
,
2

3
, 0, 0

]T
· d(5)

(28)
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Lemma 2 establishes the existence of a linear transformation from the input dis-
similarity vector to the corresponding tree metric, formally stated in the following
proposition.

Proposition 3 For N = 5, there exists a linear transformation Πσ : R10
≥0 → R10

≥0,

represented by a matrix Πσ, that maps the dissimilarity vector d(5) to the tree metric δ:

δ = Πσd
(5).

Proof. We first construct the matrix Πid corresponding to the initial assignment ψ0,
where id represents the identity permutation. By Eqs. 19, 23, 27–28, the matrix Πid

is defined such that δ = Πidd
(5), as follows:

Πid =

21 31 32 41 42 43 51 52 53 54



21 1 0 0 0 0 0 0 0 0 0

31 0 13
24

5
24

7
24 − 1

24 0 1
6 − 1

6
1
4 − 1

4

32 0 5
24

13
24 − 1

24
7
24 0 − 1

6
1
6

1
4 − 1

4

41 0 7
24 − 1

24
13
24

5
24 0 1

6 − 1
6 − 1

4
1
4

42 0 − 1
24

7
24

5
24

13
24 0 − 1

6
1
6 − 1

4
1
4

43 0 0 0 0 0 1 0 0 0 0

51 0 1
6 − 1

6
1
6 − 1

6 0 2
3

1
3 0 0

52 0 − 1
6

1
6 − 1

6
1
6 0 1

3
2
3 0 0

53 0 1
8

1
8 − 1

8 − 1
8 0 0 0 3

4
1
4

54 0 − 1
8 − 1

8
1
8

1
8 0 0 0 1

4
3
4

. (29)

The matrix Πσ for any σ-assignment is constructed by permuting the row and column
indices of Πid according to σ. Let kij denote the position of the pair (i, j) ∈ {(x, y) |
x, y ∈ [5], x > y} in the lexicographical ordering. Then the row or column indexed by
the pair kij is mapped to the row or column indexed by kσ(i)σ(j).

Formally, let ρσ be the 10×10 permutation matrix induced by σ acting on the row
indices of Πid. The rows of Πid are permuted by left-multiplication with ρσ, while the
columns are permuted by right-multiplication with ρT

σ . Then, Πσ is defined as:

Πσ = ρσΠidρ
T
σ .

Definition 9 (Linear map from dissimilarity vectors to tree metrics for five taxa)
Let Πid denote the linear map based on the initial assignment, as defined in Eq. 29. The
linear map from dissimilarity vectors to tree metrics for five taxa Πσ, associated with the
σ-assignment, is defined as:

Πσ = ρσΠidρ
T
σ ,
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where ρσ is the permutation matrix induced by σ. The tree metric δ, corresponding to the
NJ tree under the σ-assignment, is given by:

δ = Πσd
(5).

Recall that Property 2 holds if and only if the distance between the admixed taxon
and either source taxon is less than the distance between the two source taxa in the
final NJ tree. With the tree metric δ defined as a linear transformation from the input
dissimilarity space to the tree metric space (Definition 9), Property 2 is represented
by the following matrix:

Definition 10 (Tree metric entry comparison matrix) Define U as a linear map from
R10 to R2 given by:

U =

21 31 32 41 42 43 51 52 53 54[ ]
−1 0 0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 1 0 0

.

For N = 5, the tree metric δ satisfies Property 2 if and only if

Uδ ≤ 0. (30)

Thus, U is referred to as the tree metric entry comparison matrix.

By Proposition 3, a tree metric can be expressed as the product of Πσ and the
corresponding input dissimilarity vector. Thus, by Eq. 30, an input dissimilarity vector
satisfies Property 2 if and only if the following holds:

UΠσd
(5) ≤ 0. (31)

The system of inequalities in Eq. 31 defines a cone bounded by two half-spaces, where
each row of the matrix UΠσ corresponds to a half-space. To identify the set of dis-
similarity vectors in an NJ cone that satisfy Property 2, we intersect the NJ cone
with the cone defined by the half-spaces of UΠσ. For each NJ cone, we augment the
half-spaces of UΠσ with those defined by the NJ cone matrix in Definition 6. The
resulting cone, bounded by this augmented set of half-spaces, is defined as follows:

Definition 11 (Property 2 cone) The Property 2 cone matrix M
C̃O

is a(∑N
k=4

((k
2

)
− 1

)
+ 2

)
×

(N
2

)
matrix defined as:

M
C̃O

=

[
MCO
UΠσ

]
,

where MCO is the NJ cone matrix associated with CO, Πσ is the permutation matrix from
Proposition 3, and U is the comparison matrix enforcing Property 2. For each NJ cone CO,
the Property 2 cone, denoted C̃O, is the subset of CO consisting of all input dissimilarity
vectors whose corresponding tree metrics satisfy Property 2. It is defined as:

C̃O =

{
d(N) ∈ R(

N
2 )

≥0

∣∣∣ MC̃O
d(5) ≤ 0

}
.
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The points within the cones defined by the augmented matrices represent dis-
similarity vectors that produce tree metrics satisfying Property 2. Each NJ cone
corresponds to a distinct labeled tree topology (not equivalent under reflection about
the central node), uniquely determining the assignment of five taxa to the leaves of the
final NJ tree. The assignment defines the σ-assignment (Definition 8), which allows
for the construction of the matrix Πσ. Using the matrices MCO and U, we then con-
struct the matrix MC̃O

(Definition 11). A dissimilarity vector d(5) gives rise to a tree
metric satisfying Property 2 if and only if there exists a cherry-picking order whose
associated Property 2 cone contains the dissimilarity vector.

3.2 Embedding of dissimilarity vectors with admixture

The dissimilarity vector with admixture for N = 5, derived from the dissimilarity
matrix (Eq. 13), is: 

d
(4)
21

d
(4)
31

d
(4)
32

d
(4)
41

d
(4)
42

d
(4)
43

(1− α)d
(4)
21

αd
(4)
21

αd
(4)
31 + (1− α)d

(4)
32

αd
(4)
41 + (1− α)d

(4)
42



.

Since the admixed dissimilarity vector contains six independent and four dependent
entries, with the latter expressible as linear combinations of the former, there exists
an injective linear transformation mapping a dissimilarity vector in R6 to an admixed
dissimilarity vector in R10. Formally, we define:

Definition 12 (Embedding map for dissimilarity vector with admixture) The
embedding map with admixture fraction α, denoted by ια : R6 ↪−→ R10, is defined as

ια





d
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d
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d
(4)
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d
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d
(4)
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d
(4)
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= Eα
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(4)
32

d
(4)
41

d
(4)
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d
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d
(4)
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d
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d
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d
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d
(4)
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d
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αd
(4)
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αd
(4)
31 + (1− α)d

(4)
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αd
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41 + (1− α)d

(4)
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,

23



where

Eα =

21 31 32 41 42 43



21 1 0 0 0 0 0
31 0 1 0 0 0 0
32 0 0 1 0 0 0
41 0 0 0 1 0 0
42 0 0 0 0 1 0
43 0 0 0 0 0 1
51 1− α 0 0 0 0 0
52 α 0 0 0 0 0
53 0 α 1− α 0 0 0
54 0 0 0 α 1− α 0

. (32)

Since the admixed dissimilarity vector involves six independent variables, despite resid-
ing in R10, we can project NJ cones into R6 without loss of information, induced by
the inverse of the embedding map ια. This is formally defined as:

Definition 13 (Induced cone) Let C ⊆ R10 be a cone, and let MC ∈ Rx×10 be the matrix
whose rows correspond to the inward-pointing normal vectors of the half-spaces defining C,
where x denotes the number of these half-spaces. For a given admixture fraction α, define
the projection map πα : R10 → R6 by the matrix Eα ∈ R10×6 (Eq. 32). The image of C
under πα, denoted πα(C) ⊆ R6, is the cone whose bounding half-spaces are determined by
the rows of the matrix MCEα. We define πα(C) as the induced cone by Eα.

3.3 Computation of cone volumes

In Section 3.1, we identified the cones associated with the three properties for N = 5,
where every dissimilarity vector in each cone satisfies the corresponding property. Since
the dissimilarity vector with admixture has six independent variables, the induced
cones reside in R6 (Section 3.2). To compute the probability that a specific property
holds, we restrict the sample space of dissimilarity vectors to the hypercube [0, 1]6,
normalizing the maximum dissimilarity between any pair of taxa to 1. This normaliza-
tion can be achieved by dividing all entries of the dissimilarity vector by its maximum
value. Such rescaling is linear and does not affect the outcome of the NJ algorithm. The
intersection of each induced cone with this sample space forms a bounded polytope.
The probability of the property being satisfied is given by the sum of the volumes of
the polytopes formed by the cones satisfying the property, relative to the total volume
of the sample space [0, 1]6, which is 1.

We constructed the matrices MCO (Definition 6) for all NJ cones CO ⊆ R10

by generating the matrices A(5), A(4), and R(5) for each cherry-picking order using
the functions getPairs, makeAMatrix, and makeRMatrix from our NeighborJoining
module implemented in Macaulay2 (see “Data and Code Availability”). Similarly, we

constructed MC̃O
for all Property 2 cones C̃O (Definition 11) by generating the matri-

ces U and Πσ, then appending them to MCO . For a given admixture fraction α, we
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subsequently computed the induced cones (Definition 13), πα(MCO ) and πα(MC̃O
),

in R6 using the projection map πα.
We evaluated the volumes of the intersections between the induced cones and the

sample space using two approaches. First, we computed the volumes directly using
Macaulay2. Second, we estimated the volumes via Monte Carlo integration by ran-
domly sampling dissimilarity vectors within a bounded region and calculating the
proportion that lies inside the polytope.

3.3.1 Direct volume computation

Macaulay2 computes the volume of a polytope by first triangulating the polytope into
simplices. The triangulation is computed in Macaulay2 using the software TOPCOM

[18, 19]. Because there is a closed formula to compute the volume of a simplex that
only depends on the vertex matrix of the simplex, it is then straightforward to compute
the volume of the polytope as the sum of the volumes of all of these simplices.

Denote the volume of the intersection [0, 1]6 ∩ πα(C) as Volπα(C), where C repre-

sents either an NJ cone CO or a Property 2 cone C̃O. We employed the Polyhedra

module from Macaulay2 to compute the exact volumes of these intersections. The
function coneFromHData was used to transform each MC into its corresponding cone,
which was then mapped to the induced cone πα(C). To define the bounding regions,
we used hypercube to construct the hypercube [−1, 1]6 and posOrthant to define the
positive orthant [0,∞)6. The intersection of these polyhedral components was then
computed using intersect, and the volume Volπα(C) was obtained using the volume
function. This process provided the exact volumes of [0, 1]6 ∩ πα(C) for both NJ and
Property 2 cones.

Let Ωall represent the set of all equivalence classes of cherry-picking orders, and
let Ω1 and Ω3 denote the sets of equivalence classes of cherry-picking orders satisfying
Property 1 and Property 3, respectively (Table 2). The probabilities that a random
dissimilarity vector results in an NJ tree satisfying Property 1, Property 2, or Property
3, respectively, are given by:

P1 =
∑

O∈Ω1

Volπα(CO),

P2 =
∑

O∈Ωall

Volπα(C̃O),

P3 =
∑

O∈Ω3

Volπα(CO).

(33)

3.3.2 Monte Carlo integration

For each α ∈ {0.01, 0.02, ..., 0.99}, we generated Nsample = 100, 000 random vectors
d(4) ∈ [0, 1]6, totalling 99, 00, 000 samples, using the random function from Macaulay2.
Each random vector d(4) corresponds to a dissimilarity vector with admixture, d(5) =
Eαd

(4) ∈ R10. For each cone C ⊆ R10, representing either an NJ cone CO or a Property
2 cone C̃O, we evaluated whether d(4) lies within the induced cone πα(C) ⊆ R6 by
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checking the following inequality:

(MCEα)d
(4) ≤ 0.

For a given admixture fraction α, the probabilities that an NJ tree inferred from d(5) =
Eαd

(4) satisfies Property 1, Property 2, or Property 3, respectively, are computed as:

P1 =
1

Nsample

∑
O∈Ω1

1

[
d(4) ∈ πα(CO)

]
,

P2 =
1

Nsample

∑
O∈Ωall

1

[
d(4) ∈ πα(C̃O)

]
,

P3 =
1

Nsample

∑
O∈Ω3

1

[
d(4) ∈ πα(CO)

]
.

3.3.3 Standard NJ simulation

For comparison with the standard approach [14], we directly applied the NJ algorithm
to each randomly generated admixed dissimilarity vector, d(5) = Eαd

(4), to infer
the corresponding NJ tree using our NeighborJoining module in Macaulay2. The
runNeighborJoiningClassic function tracks the cherry-picking order throughout
iterations, enabling identification of the corresponding NJ cone. To evaluate Property
1, we assessed whether a cherry containing the two source taxa (1, 2) was selected
in the first iteration, as those are the only cones violating Property 1 (Section 3.1.1;
Type 3). Properties 2 and 3 were evaluated directly on the inferred NJ trees by first
traversing the NJ tree with the dfs function to compute the number of edges and
shortest path lengths between pairs of source and admixed taxa. These metrics were
then compared to test adherence to the respective properties.

4 Results

We present the probability that a random dissimilarity vector for N = 5 with
admixture satisfies the three properties defined in Section 2.2. For each admixture frac-
tion α ∈ {0.01, 0.02, . . . , 0.99}, we computed Volπα(CO) and Volπα(C̃O), and averaged

these values across all α. The probabilities of violating the properties were evaluated
using three methods: direct volume computation, Monte Carlo integration, and NJ
algorithm-based simulations. All methods produced consistent results.

Further analyses revealed the dependency of Volπα(CO) and Volπα(C̃O) on α and its

impact on the probabilities of satisfying the defined properties. We provide theoretical
insights into why Volπα(CO) = 0 for certain cherry-picking orders and discuss its
effect on the probabilities of satisfying Properties 1 and 3. Additionally, we proved
the volume equivalence between specific πα(CO) and their corresponding πα(C̃O),
identifying the induced NJ cones that only contain dissimilarity vectors satisfying
Property 2.
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Table 2: Mean Volπα(CO) and mean Vol
πα(C̃O)

from direct computation. The first

column lists the indices of 30 distinct NJ cones CO for N = 5, while the second column
shows the equivalence class of cherry-picking orders for each NJ cone, following the conven-
tion in Section 2.1.5. The third column illustrates the labeled tree topology for each order,
distinguishing reflection symmetry about the central taxon. The fourth and fifth columns
indicate whether the corresponding NJ cone satisfies Property 1 and Property 3, respectively.
“T” denotes that the property is satisfied, while “F” indicates it is not. The sixth and sev-
enth columns report the mean volumes of πα(CO) and πα(C̃O), respectively, averaged over
99 values of α in {0.01, 0.02, ..., 0.99} for each O ∈ Ωall. These volumes were obtained using
the direct computation method (Section 3.3.1). Non-averaged volumes at α = 0.01, 0.5, and
0.99 are provided in Table A1. The final column categorizes the 30 NJ cones by tree topol-
ogy, distinguishing three node types: source taxa (S), an admixed taxon (A), and other taxa
(O). This classification yields six distinct labeled tree topologies based on the arrangement of
two S taxa, one A taxon, and two O taxa. These topology categories are considered equiva-
lent if they differ only by reflection about the central taxon. Rows are ordered by increasing
mean volume within each labeled tree topology category, with NJ cones further sorted by the
ascending label of the central taxon.

Index O NJ Tree Prop. 1 Prop. 3
Mean

Volπα(CO )
Mean

Volπα(C̃O)

Tree
Category

1 (21)(43)
4
3

5
1
2

F

F 0 0
O
O

A
S
S

2 (43)(21)
2
1

5
3
4

T

3 (21)(54)
5
4

3
1
2

F

F 0 0
A
O

O
S
S

4 (21)(53)
5
3

4
1
2

5 (54)(21)
2
1

3
4
5

T
6 (53)(21)

2
1

4
3
5

7 (53)(42)
4
2

1
3
5

T F

0 0

O
S

S
O
A

8 (54)(32)
3
2

1
4
5

9 (53)(41)
4
1

2
3
5

10 (54)(31)
3
1

2
4
5

11 (42)(53)
5
3

1
2
4

0.00031 0.00024
12 (32)(54)

5
4

1
2
3

13 (41)(53)
5
3

2
1
4

14 (31)(54)
5
4

2
1
3
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Index O NJ Tree Prop. 1 Prop. 3
Mean

Volπα(CO)

Mean
Volπα(C̃O

)
Tree

Category

15 (51)(42)
4
2

3
1
5

T T

0.04283 0.04259

O
S

O
S
A

16 (52)(41)
4
1

3
2
5

17 (51)(32)
3
2

4
1
5

18 (52)(31)
3
1

4
2
5

19 (42)(51)
5
1

3
2
4

0.05169 0.04370
20 (41)(52)

5
2

3
1
4

21 (32)(51)
5
1

4
2
3

22 (31)(52)
5
2

4
1
3

23 (31)(42)
4
2

5
1
3

T T 0.06077 0.06073
O
S

A
S
O

24 (32)(41)
4
1

5
2
3

25 (42)(31)
3
1

5
2
4

26 (41)(32)
3
2

5
1
4

27 (52)(43)
4
3

1
2
5

T T

0.05649 0.05613

O
O

S
S
A

28 (51)(43)
4
3

2
1
5

29 (43)(52)
5
2

1
3
4

0.13229 0.13229
30 (43)(51)

5
1

2
3
4
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4.1 Mean Volπα(CO) and Volπα(C̃O) over α

Table 2 presents the mean volumes Volπα(CO) and Volπα(C̃O) for each O ∈ Ωall,

averaged across all values of α ∈ {0.01, 0.02, ..., 0.99}, computed using the direct
computation method (Section 3.3.1) For each O ∈ Ωall, the induced NJ cones corre-
sponding to the cherry-picking orders indexed 1–10 have volume zero. The proof of this
result for all α ∈ (0, 1) is provided in Section 4.3. Since πα(C̃O) is a subset of πα(CO),

any πα(C̃O) corresponding to a πα(CO) with volume zero also has a volume zero.
The largest mean Volπα(CO) occurs forO = (43)(52) and (43)(51) with Volπα(CO) =

0.13229. Notably, the mean volumes of the induced Property 2 cones corresponding
to these two NJ cones are identical to those of the induced NJ cones themselves,
indicating that every dissimilarity vector within these induced NJ cones results in tree
metrics that satisfy Property 2. The proof for this result for all α ∈ (0, 1) is provided
in Section 4.4.

Table 2 groups the thirty labeled tree topologies into six categories, each represent-
ing a distinct assignment of two S taxa, one A taxon, and two O taxa to the leaves
of the NJ tree. Categories differing only by a reflection about the central node are
treated as equivalent. This categorization captures the distinct effects of admixture
on the NJ tree structure. The category with the largest mean volume—the average
Volπα(CO) for all O within that category—corresponds to cherry-picking orders of the
form (SA)(OO).

4.2 Volπα(CO) and Volπα(CO) as functions of α

Figure 6 presents the volumes of induced NJ cones Volπα(CO), constrained to
the sample space [0, 1]6, as functions of the admixture fraction α, where α ∈
{0.01, 0.02, . . . , 0.99}. The volumes reported are from the direct computation method.
α ranges from near-boundary values (α = 0.01 and α = 0.99, where one source popu-
lation dominates) to the midpoint α = 0.5, representing equal contribution from both
source populations. Each subplot groups distinct cones based on their mean volume
over all α-values, as indicated by the NJ cone indices in Table 2. The curves show
distinct behaviors depending on the structure of O, despite the cones in each subplot
having identical mean volumes averaged across all admixture fractions. Within each
subplot, the NJ cones exhibit two distinct volume trajectories with respect to α, even
when four cones share the same mean volume.

Volπα(C(42)(53)) and Volπα(C(32)(54)) decrease monotonically with α, while
Volπα(C(41)(53)) and Volπα(C(31)(54)) increases over the same range of α (Figure 6A).
These contrasting monotonic behaviors reflect distinct structural properties of the NJ
cones, highlighting the role of admixture fractions in differentiating NJ cone geome-
tries. Cones in the (O,A)(S,O) category have volumes (maximum: 0.001760227) that
are two orders of magnitude smaller than those in Figures 6B–F. The largest vol-
ume, 0.1701146, occurs for cones πα(C(43)(52)) and πα(C(43)(51)), classified under the
(S,A)(O,O) category (Figures 6F).

Similarly, Volπα(C(52)(41)) and Volπα(C(52)(31)) decrease monotonically as α increases
from 0.01 to 0.99, while Volπα(C(51)(42)) and Volπα(C(51)(32)) increase monotonically over
the same range (Figure 6B). All cherry-picking orders in this subplot are expressed as
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Fig. 6: Induced NJ cone volume Volπα(CO) as a function of α. The x-axis represents
the admixture fraction α, where α ∈ {0.01, 0.02, . . . , 0.99}, and the y-axis shows the volume of
the induced NJ cone constrained to the sample space [0, 1]6, i.e., Volπα(CO) = [0, 1]6∩πα(C),
computed using the direct computation method (Section 3.3.1). Each curve corresponds to a
distinct NJ cone CO, indexed as in Table 2 and grouped by mean volume over all α values.
NJ cones with indices 1–10, for which Volπα(CO) = 0 for all α, are omitted from the figure.
NJ cones correspond to: (A) (42)(53), (32)(54), (41)(53), and (31)(54); indices 11–14. (B)
(51)(42), (52)(41), (51)(32), and (52)(31); indices 15–18. (C) (42)(51), (41)(52), (32)(51),
and (31)(52); indices 19–22. (D) (31)(42), (32)(41), (42)(31), and (41)(32); indices 23–26.
(E) (52)(43) and (51)(43); indices 27, 28. (F) (43)(52) and (43)(51); indices 29, 30.

(S,A)(S,O), where the first cherry consists of a source taxon and an admixed taxon.

For small α, d
(5)
5i = αd

(5)
1i + (1 − α)d

(5)
2i (Eq. 12), which makes d

(5)
5i closer to d

(5)
2i ,

increasing the probability of selecting (5, 2) as the first cherry. Conversely, for large

α, d
(5)
5i becomes closer to d

(5)
1i than to d

(5)
2i , favoring the selection of (5, 1) as the first

cherry. This analogous pattern is observed for cones in panels C and E.
Figures 6D and F exhibit a qualitative difference from the other panels, where two

volumes increase while two decrease monotonically with α. In contrast, Figures 6D
and F show more complex, non-monotonic relationships between α and the induced
NJ cone volumes. In Figure 6D, cones πα(C(31)(42)) and πα(C(41)(32)) attain their
maximum and minimum volumes at α = 0.34 and α = 0.99, respectively, while cones
πα(C(32)(41)) and πα(C(42)(31)) reach their maximum at α = 0.66 and minimum at
α = 0.01. All these cones share the same maximum volume of 0.1142092 and minimum
volume of 0.001760227. In Figure 6F, cone πα(C(43)(52)) reaches its maximum volume
at α = 0.30 and minimum volume at α = 0.99, while cone πα(C(43)(51)) attains its
maximum at α = 0.70 and minimum at α = 0.01. Both cones share the largest
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maximum volume of 0.1701146 and the largest minimum volume of 0.06219378 across
all cones for any α.

Figure 7 shows the induced Property 2 cone volumes Volπα(C̃O) as a function

of α. The results qualitatively align with Figure 6, except for Figure 7C, though
the volumes are consistently smaller for each O and α due to the induced Prop-
erty 2 cone being a subset of the corresponding induced NJ cone. Unlike Figure 6C,
Figure 7C does not exhibit strict monotonicity with respect to α. The volumes of
πα(C(42)(51)) and πα(C(32)(51)) increase monotonically until α = 0.91, reaching a max-
imum of 0.09632147, after which they decrease monotonically as α approaches 0.99.
Conversely, the volumes of πα(C(41)(52)) and πα(C(31)(52)) follow an opposite trend,
increasing monotonically until α = 0.09, reaching the same maximum of 0.09632147,
and decreasing monotonically for α ∈ (0.09, 0.99).

Table A1 reports the computed volumes Volπα(CO) and Volπα(C̃O) for each O at

specific values of α = 0.01, 0.5, and 0.99. These α-values were chosen to capture the
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Fig. 7: Induced Property 2 cone volume Vol
πα(C̃O)

as a function of α. The x-

axis represents the admixture fraction α, where α ∈ {0.01, 0.02, . . . , 0.99}, and the y-axis
shows the volume of the induced Property 2 cone constrained to the sample space [0, 1]6, i.e.,

Vol
πα(C̃O)

= [0, 1]6 ∩πα(C̃), computed using the direct computation method (Section 3.3.1).

The cone indices follow those listed in Table 2. NJ cones with indices 1–10, for which
Vol

πα(C̃O)
= 0 for all α, are omitted from the figure. The figure layout mirrors that of

Figure 6. Property 2 cones correspond to: (A) (42)(53), (32)(54), (41)(53), and (31)(54);
indices 11–14. (B) (51)(42), (52)(41), (51)(32), and (52)(31); indices 15–18. (C) (42)(51),
(41)(52), (32)(51), and (31)(52); indices 19–22. (D) (31)(42), (32)(41), (42)(31), and (41)(32);
indices 23–26. (E) (52)(43) and (51)(43); indices 27, 28. (F) (43)(52) and (43)(51); indices
29, 30.

31



behavior at the extremities of the parameter space, where α = 0.01 and α = 0.99
correspond to near-complete contribution from a single source population, and α = 0.5
represents an equal admixture scenario.

4.3 Cherry-picking orders with Volπα(CO) = 0

Both the direct volume computation method and the Monte Carlo method support
the following proposition, which we prove using two independent methods.

Proposition 4 For any admixture fraction α ∈ (0, 1), Volπα(CO) = 0 if O corresponds to
one of the following cherry-picking orders:

(2, 1)(4, 3), (2, 1)(5, 3), (2, 1)(5, 4), (4, 3)(2, 1), (5, 3)(2, 1),

(5, 3)(4, 1), (5, 3)(4, 2), (5, 4)(2, 1), (5, 4)(3, 1), (5, 4)(3, 2).
(34)

Proof. Method 1: proof by contradiction

Let O be a cherry-picking order from Eq. 34. By applying the Fourier–Motzkin elim-
ination [20–22] to the system of inequalities (MCOEα)d

(4) ≤ 0, which defines the

induced NJ cone πα(CO), we obtain that there exists i ∈ [6] such that d
(4)
i ≤ 0 [14].

This contradicts the assumption that all entries of d(4) are strictly positive. Thus, no
dissimilarity vector d(4) belongs to the induced cone πα(CO), implying its volume is
Volπα(CO) = 0.

Method 2: proof by dimensionality

The dimensions of the induced NJ cones πα(CO) were computed in Macaulay2. All
cones corresponding to the cherry-picking orders in Eq. 34 have dimensions strictly
less than 6, indicating that they reside in proper subspaces of R6. Since the dimension
of each cone is strictly lower than that of the ambient space, their volumes in R6 are
zero.

Corollary 4.1 For any admixture fraction α ∈ (0, 1), the probability that an admixed

dissimilarity vector d(5) violates Property 1 is zero.

Proof. Only Type-3 cherry-picking orders violate Property 1 (Section 3.1.1), and
Proposition 4 lists all such Type-3 cherry-picking orders, showing that the induced
cones corresponding to these orders have zero volume. Thus, for a dissimilarity vec-
tor d(5) with admixture, no Type-3 cherry-picking orders are possible. Therefore, the
probability of d(5) violating Property 1 is zero.

Corollary 4.2 For any admixture fraction α ∈ (0, 1), the probability that an admixed

dissimilarity vector d(5) violates Property 3 is given by the sum of volumes of the induced
NJ cones corresponding to the following cherry-picking orders:

(3, 2)(5, 4), (4, 2)(5, 3), (3, 1)(5, 4), (4, 1)(5, 3).
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Proof. There are 14 cherry-picking orders that violate Property 3 (Section 3.1.2).
Of these, 10 correspond to volume-zero induced NJ cones as listed in Proposition 4,
while the remaining four have non-zero volumes. Thus, the probability of violating
Property 3 is given by the sum of the volumes of these four πα(CO)’s not included in
Proposition 4.

4.4 Cherry-picking orders with Volπα(CO) = Volπα(C̃O)

Proposition 5 For any admixture fraction α ∈ (0, 1), no dissimilarity vector d(4) within
the induced NJ cones πα(C(4,3)(5,1)) and πα(C(4,3)(5,2)) (Figure B5) violates Property 2.

Proof. We proceed by contradiction, assuming that Property 2 is violated. This implies
that either δ21 < δ51 or δ21 < δ52.

The σ-assignment corresponding to the induced NJ cone πα(C(4,3)(5,1)), and
thereby the labeled tree topology in Figure B5A, reorders the taxa from the initial
assignment (Figure 5B) as follows:

σ(1) = 4, σ(2) = 3, σ(3) = 5, σ(4) = 1, σ(5) = 2.

The linear map from dissimilarity vectors to tree metrics for this σ-assignment, Πσ =
ρσΠidρ

T
σ (Definition 9), is then given by:

Πσ =

21 31 32 41 42 43 51 52 53 54



21 3
4

1
8 0 1

8 0 0 0 1
4 − 1

8 − 1
8

31 1
4

13
24

1
6

5
24 − 1

6 0 0 − 1
4

7
24 − 1

24

32 0 1
6

2
3 − 1

6
1
3 0 0 0 1

6 − 1
6

41 1
4

5
24 − 1

6
13
24

1
6 0 0 − 1

4 − 1
24

7
24

42 0 − 1
6

1
3

1
6

2
3 0 0 0 − 1

6
1
6

43 0 0 0 0 1 0 0 0 0 0

51 0 0 0 0 0 1 0 0 0 0

52 1
4 − 1

8 0 − 1
8 0 0 0 3

4
1
8

1
8

53 − 1
4

7
24

1
6 − 1

24 − 1
6 0 0 1

4
13
24

5
24

54 − 1
4 − 1

24 − 1
6

7
24

1
6 0 0 1

4
5
24

13
24

. (35)

We first consider the case where O = (4, 3)(5, 1) and δ21 < δ52. Then by Eq. 35,

δ52 =
1

4
d
(5)
21 − 1

8
d
(5)
31 − 1

8
d
(5)
41 +

3

4
d
(5)
52 +

1

8
d
(5)
53 +

1

8
d
(5)
54 , (36)

δ21 =
3

4
d
(5)
21 +

1

8
d
(5)
31 +

1

8
d
(5)
41 +

1

4
d
(5)
52 − 1

8
d
(5)
53 − 1

8
d
(5)
54 . (37)
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Subtracting Eq. 36 from Eq. 37 results in the following:

δ21 − δ52 =
1

2
d
(5)
21 +

1

4
d
(5)
31 +

1

4
d
(5)
41 − 1

2
d
(5)
52 − 1

4
d
(5)
53 − 1

4
d
(5)
54 ,

=
1

2
(1− α)d

(4)
21 +

1

4
(1− α)d

(4)
31 + (1− α)d

(4)
32 +

1

4
(1− α)d

(4)
41 − 1

4
(1− α)d

(4)
42 ,

where the last step follows from d(5) = Eαd
(4) (Definition 12). Then δ21 < δ52 can be

written as the following inequality:[
1

2
(1− α),

1

4
(1− α), 1− α,

1

4
(1− α),−1

4
(1− α)

]T
· d(4) < 0.

Dividing both sides of the inequality by 1− α gives:[
1

2
,
1

4
, 1,

1

4
,−1

4

]T
· d(4) < 0. (38)

By Definition 13, every dissimilarity vector d(4) contained in πα(C(4,3)(5,1)) satisfies:

(MC(4,3)(5,1)
Eα)d

(4) =



0 −α α− 1 −α α− 1 1

−α+ 2 −2 0 −α α− 2 2

α+ 1 0 −2 −α− 1 α− 1 2

−α+ 2 −α α− 2 −2 0 2

α+ 1 −α− 1 α− 1 0 −2 2

2α 0 −1 0 −1 1

−2α+ 2 −1 0 −1 0 1

1 −2α 2α− 2 −1 −1 2

1 −1 −1 −2α 2α− 2 2

−α −1/2α 1/2α −1/2α 1/2α 0

−2α+ 1 −1/2 1/2 −1/2 1/2 0



d(4) ≤ 0. (39)

Multiplying Eq. 38 by 2 and adding it to the last row of Eq. 39 yields:[
2(1− α), 0,

5

2
, 0, 0

]T
d(4) ≤ 0,

=⇒ 2(1− α)d
(4)
21 +

5

2
d
(4)
32 ≤ 0. (40)

Since 2(1 − α) > 0 and 5
2 > 0, Eq. 40 implies that either d

(4)
21 ≤ 0 or d

(4)
21 ≤ 0, which

contradicts the assumption that all entries of d(4) are strictly positive.
In the second case, O = (4, 3)(5, 1) and δ21 < δ51. As in the first case, if the

dissimilarity vector d(5) = Eαd
(4) corresponds to a tree metric where δ21 < δ51, the
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following inequality holds:[
(
5

4
α− 1

4
),
1

8
(1− α),−1

8
(1− α),

1

8
(1− α),−1

8
(1− α), 0

]T
· d(4) ≤ 0. (41)

Multiplying Eq. 41 by 8 and adding it to the last row of Eq. 39, scaled by 2(1 − α),
results in the following:

[2(1− α)(−2α+ 1) + 10α− 2, 0, 0, 0, 0, 0]
T · d(4) ≤ 0,

=⇒
[
4α2 + 4α, 0, 0, 0, 0, 0

]T · d(4) ≤ 0,

=⇒ 4α(α+ 1)d
(4)
21 ≤ 0.

(42)

Since 4α > 0 and α + 1 > 0, Eq. 42 implies d
(4)
21 ≤ 0, contradicting the assumption

that all entries of d(4) are strictly positive.
Thus, no dissimilarity vector in πα(C(4,3)(5,1)) violates Property 2. By analogous

reasoning, the same conclusion holds for dissimilarity vectors in πα(C(4,3)(5,2)), which
corresponds to the labeled tree topology in Figure B5B.

4.5 Probability of satisfying each of the three properties

For an admixed dissimilarity vector with N = 5, the probability of satisfying Prop-
erty 1 is always 1, independent of α. Only Type-3 equivalence classes corresponding
to the cherry-picking orders (21)(54), (21)(53), and (21)(43) violate Property 1
(Section 3.1.1). Two independent approaches confirmed that the NJ cones correspond-
ing to these equivalence classes of cherry-picking orders have zero volume. The first
approach involves direct computation from Table 2, and the second follows from
Proposition 4 in Section 4.3.

The probability of satisfying Property 2 equals the total volume of all cones satisfy-
ing Property 2 (Eq. 33). Figure 8A shows how P2 depends on the admixture parameter
α, computed via direct volume computation. For α = 0.5, representing equal contri-
bution from both source populations, the probability reaches its maximum value of
0.9996976. As α deviates from 0.5, reflecting increasing asymmetry in the admixture
proportions, the probability decreases symmetrically, reaching a minimum of 0.8903937
at the extreme values α = 0.01 and 0.99, where one source population contributes
almost entirely to the admixed population. The observed symmetry around α = 0.5
aligns with the interchangeable roles of the two source populations in the assumed
admixture model.

Similar qualitative behavior is observed for Property 3 (Figure 8B), whose prob-
ability is computed as the total volume of the induced NJ cones satisfying Property
3 (Eq. 33, Figure B4). As with Property 2, the maximum probability occurs at bal-
anced admixture (α = 0.5) with a value of 0.999537, which is slightly higher than that
of Property 2. However, unlike Property 2, even at extreme admixture proportions
(α = 0.01 and α = 0.99), the probability remains high, at 0.999537. This indicates
that Property 3 is robust to skewed admixture, while Property 2 is more sensitive to
asymmetry in the contributions from the source populations.
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Fig. 8: P2 and P3 as functions of α. The x-axis denotes the admixture fraction α, where
α ∈ {0.01, 0.02, . . . , 0.99}, and the y-axis represents the probability that a given property
holds, computed using the direct computation method (Section 3.3.1). For each value of α,
the probability is obtained by summing the volumes of the induced cones intersecting with the
sample space [0, 1]6. (A) The probability that Property 2 holds, P2 =

∑
O∈Ωall

Vol
πα(C̃O)

,

where the summation is taken over all cherry-picking orders. (B) The probability that Prop-
erty 3 holds, P3 =

∑
O∈Ω3

Volπα(CO), where the summation is restricted to the cones
corresponding to cherry-picking orders that satisfy Property 3. Property 1 holds for all
admixed dissimilarity vectors d(5) = Eαd

(4) across all values of α, i.e., P1 = 1 for all α ∈ (0, 1)
(Corollary 4.1). Thus, the corresponding plot for Property 1 is omitted from the figure.

To assess the accuracy of the direct volume computation and Monte Carlo methods,
we compared their results with those obtained from the standard NJ simulation [14]
in Macaulay2 (Section 3.3). Table 3 summarizes the probabilities of violating each
of the three properties across the methods. The results show close agreement, with
differences only at the fifth decimal place.

Table 3: Methods comparison. This table shows the probabilities of violating each of
the three properties averaged across all α ∈ {0.01, 0.02, . . . , 0.99}. In the direct computation
method (Section 3.3.1), the probability of violation was computed as 1 minus the total volume
of the induced cones satisfying each property within the sample space [0, 1]6. In the Monte

Carlo method (Section 3.3.2), 100,000 dissimilarity vectors d(4) were uniformly sampled from
[0, 1]6 for each of the 99 α values. The violation probability was computed as the proportion
of vectors falling outside the induced cones, based on the total of 9,900,000 samples. In
the standard NJ simulation (Section 3.3.3), the NJ algorithm was directly applied to each

dissimilarity vector d(5) = Eαd
(4) to infer the corresponding NJ tree. The probability of

violation was then calculated as the fraction of NJ trees (out of 9,900,000) that failed to
satisfy the properties.

Probability of violation
Property violated 1 2 3

Direct computation 0 0.0341325 0.0012592
Monte Carlo 0 0.0341488 0.0012688
Standard NJ simulation 0 0.0341288 0.0012461
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5 Discussion

In this study, we have investigated the geometric and probabilistic behavior of the
NJ algorithm applied to distance matrices under admixture, focusing on a five-taxon
case. By formulating the problem using polyhedral cones and projection maps, we
have introduced a geometric framework that partitions the space of dissimilarity vec-
tors based on their clustering, distance, and topological path length properties. This
approach has enabled direct computation of the associated probabilities by evaluating
the volumes of the induced cones within the bounded dissimilarity space. We have val-
idated our analytical results via Monte Carlo integration and classical NJ simulations,
confirming their accuracy. We have shown that while Property 1 is always satisfied,
the probabilities of satisfying Properties 2 and 3 depend significantly on the admix-
ture fraction. We have also proven that certain induced NJ cones have zero volume
when admixture is present, indicating that these topologies are structurally incom-
patible with admixture under the NJ framework. Our study contributes to advancing
the theoretical understanding of how admixture affects the NJ tree inference. Further,
our Macaulay2 implementation enables efficient analysis of the NJ algorithm under
admixture, providing a valuable tool for studying complex evolutionary relationships
involving admixed populations.

Although our analysis has focused on the five-taxon case, the geometric and com-
binatorial structure of NJ cones and their projections to lower-dimensional spaces
can be generalized to cases with N > 5 taxa. Our framework can also be extended
to multi-way linear admixture models beyond two-way admixture, introducing addi-
tional constraints on the dissimilarity vectors. These complexities can be addressed
by extending the projection map to accommodate higher-order mixtures and defin-
ing new classes of induced NJ cones that capture the more complex admixture
relationships among taxa. Beyond linear distance measures, further theoretical explo-
ration should focus on formalizing the behavior of the NJ algorithm under non-linear
genetic distances, such as FST [23] and other F -statistics [24, 25], which would require
modifications to the current linear projection map.

The NJ algorithm has been shown to be a greedy heuristic [26] for the balanced
minimum evolution (BME) problem [27, 28]. A natural extension of our current
geometric approach would be to investigate whether the same properties involving
admixture and associated probabilities observed under NJ also hold in BME. By lever-
aging the geometric methods from this work, we can analyze the BME cones [15, 16, 29]
analogous to the NJ cones. Such an analysis would reveal structural similarities and
differences between NJ and BME, providing a deeper understanding of how algorith-
mic choices impact phylogenetic tree construction under complex evolutionary models,
including cases of admixture.

Finally, our framework provides a principled approach for studying an admixed
taxon as a “rogue taxon” [30, 31]. Kim et al. [14] demonstrated via simulation that the
three properties hold more frequently when the distances among N − 1 non-admixed
taxa are additive, a phenomenon linked to the rogue taxon behavior. Since a metric
is additive if and only if it satisfies the four-point condition [2], defined by a set of
linear inequalities, our geometric framework is ideally suited to rigorously analyze how
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the addition of an admixed taxon to an underlying set of N − 1 populations with a
tree-like evolutionary history affects the topological stability of inferred source trees.

Data and Code Availability. All code used in this manuscript, including our
implementation of the NJ algorithm as the module NeighborJoining, is available on
Zenodo at 10.5281/zenodo.13363307.

Acknowledgements. This work was supported by National Science Foundation
grant DMS-2001367.

References

[1] Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstruct-
ing phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)
https://doi.org/10.1093/oxfordjournals.molbev.a040454

[2] Buneman, P.: A note on the metric properties of trees. Journal of Combinato-
rial Theory, Series B 17(1), 48–50 (1974) https://doi.org/10.1016/0095-8956(74)
90047-1

[3] Atteson, K.: The performance of neighbor-joining methods of phylogenetic
reconstruction. Algorithmica 25(2), 251–278 (1999) https://doi.org/10.1007/
PL00008277

[4] Mihaescu, R., Levy, D., Pachter, L.: Why neighbor-joining works. Algorithmica
54(1), 1–24 (2009) https://doi.org/10.1007/s00453-007-9116-4

[5] Steel, M.: Phylogeny: Discrete and Random Processes in Evolution. Society for
Industrial and Applied Mathematics, Philadelphia (2016)

[6] Bowcock, A.M., Kidd, J.R., Mountain, J.L., Hebert, J.M., Carotenuto, L., Kidd,
K.K., Cavalli-Sforza, L.L.: Drift, admixture, and selection in human evolution:
A study with DNA polymorphisms. Proceedings of the National Academy of
Sciences of the United States of America 88(3), 839–843 (1991) https://doi.org/
10.1073/pnas.88.3.839

[7] Mountain, J.L., Cavalli-Sforza, L.L.: Inference of human evolution through cladis-
tic analysis of nuclear DNA restriction polymorphisms. Proceedings of the
National Academy of Sciences of the United States of America 91(14), 6515–6519
(1994) https://doi.org/10.1073/pnas.91.14.6515

[8] Bian, Y., Zhang, S., Zhou, W., Zhao, Q., Siqintuya, Zhu, R., Wang, Z., Gao, Y.,
Hong, J., Lu, D., Li, C.: Analysis of genetic admixture in Uyghur using the 26 Y-
STR loci system. Scientific Reports 6(1), 19998 (2016) https://doi.org/10.1038/
srep19998

[9] Rodriguez-Flores, J.L., Fakhro, K., Agosto-Perez, F., Ramstetter, M.D., Arbiza,
L., Vincent, T.L., Robay, A., Malek, J.A., Suhre, K., Chouchane, L., Badii, R.,

38

https://zenodo.org/doi/10.5281/zenodo.13363307
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1016/0095-8956(74)90047-1
https://doi.org/10.1016/0095-8956(74)90047-1
https://doi.org/10.1007/PL00008277
https://doi.org/10.1007/PL00008277
https://doi.org/10.1007/s00453-007-9116-4
https://doi.org/10.1073/pnas.88.3.839
https://doi.org/10.1073/pnas.88.3.839
https://doi.org/10.1073/pnas.91.14.6515
https://doi.org/10.1038/srep19998
https://doi.org/10.1038/srep19998


Al-Nabet Al-Marri, A., Abi Khalil, C., Zirie, M., Jayyousi, A., Salit, J., Keinan,
A., Clark, A.G., Crystal, R.G., Mezey, J.G.: Indigenous Arabs are descendants
of the earliest split from ancient Eurasian populations. Genome Research 26(2),
151–162 (2016) https://doi.org/10.1101/gr.191478.115

[10] Kennedy, J.P., Pil, M.W., Proffitt, C.E., Boeger, W.A., Stanford, A.M., Devlin,
D.J.: Postglacial expansion pathways of red mangrove, Rhizophora mangle, in
the Caribbean Basin and Florida. American Journal of Botany 103(2), 260–276
(2016) https://doi.org/10.3732/ajb.1500183
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Appendix A Supplementary Tables

Table A1: Volπα(CO) and Vol
πα(C̃O)

for α = 0.01,0.5 and 0.99. The table mirrors

the structure of Table 2, with mean volumes replaced by those computed for fixed values
of α = 0.01, 0.5, and 0.99. For each fixed α and cherry-picking order O ∈ Ω, the volumes
Volπα(CO) and Vol

πα(C̃O)
were obtained using the direct computation method (Section 3.3.1).

The final column, labeled “TC”, stands for “Tree Category”.

# O NJ Tree
Volπα(CO) Volπα(C̃O) TC

α = 0.01 α = 0.5 α = 0.99 α = 0.01 α = 0.5 α = 0.99

1 (21)(43)
4
3

5
1
2

0 0 0 0 0 0
O
O

A
S
S

2 (43)(21)
2
1

5
3
4

3 (21)(54)
5
4

3
1
2

0 0 0 0 0 0
A
O

O
S
S

4 (21)(53)
5
3

4
1
2

5 (54)(21)
2
1

3
4
5

6 (53)(21)
2
1

4
3
5

7 (53)(42)
4
2

1
3
5

0 0 0 0 0 0

O
S

S
O
A

8 (54)(32)
3
2

1
4
5

9 (53)(41)
4
1

2
3
5

10 (54)(31)
3
1

2
4
5

11 (42)(53)
5
3

1
2
4

0.00176 0.00012 0.00003 0.00152 0.00004 0
12 (32)(54)

5
4

1
2
3

13 (41)(53)
5
3

2
1
4

0.00003 0.00012 0.00176 0 0.00004 0.00152
14 (31)(54)

5
4

2
1
3

41



# O NJ Tree
Volπα(CO) Volπα(C̃O) TC

α = 0.01 α = 0.5 α = 0.99 α = 0.01 α = 0.5 α = 0.99

15 (51)(42)
4
2

3
1
5

0.00195

0.03255

0.1161 0.00195

0.03255

0.11409

O
S

O
S
A

16 (52)(41)
4
1

3
2
5

0.1161 0.00195 0.11409 0.00195

17 (51)(32)
3
2

4
1
5

0.00195 0.1161 0.00195 0.11409

18 (52)(31)
3
1

4
2
5

0.1161 0.00195 0.11409 0.00195

19 (42)(51)
5
1

3
2
4

0.00196

0.0328

0.14561 0.00196

0.0328

0.09457

20 (41)(52)
5
2

3
1
4

0.14561 0.00196 0.09457 0.00196

21 (32)(51)
5
1

4
2
3

0.00196 0.14561 0.00196 0.09457

22 (31)(52)
5
2

4
1
3

0.14561 0.00196 0.09457 0.00196

23 (31)(42)
4
2

5
1
3

0.0626

0.08212

0.00417 0.06251

0.08212

0.00417

O
S

A
S
O

24 (32)(41)
4
1

5
2
3

0.00417 0.0626 0.00417 0.06251

25 (42)(31)
3
1

5
2
4

0.00417 0.0626 0.00417 0.06251

26 (41)(32)
3
2

5
1
4

0.0626 0.00417 0.06251 0.00417

27 (52)(43)
4
3

1
2
5

0.11734

0.05264

0.00414 0.11455

0.05264

0.00414

O
O

S
S
A

28 (51)(43)
4
3

2
1
5

0.00414 0.11734 0.00414 0.11455

29 (43)(52)
5
2

1
3
4

0.14795

0.15218

0.06219 0.14795

0.15218

0.06219

30 (43)(51)
5
1

2
3
4

0.06219 0.14795 0.06219 0.14795
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Appendix B Supplementary Figure
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Fig. B1: Type 1 labeled tree topologies for Property 1. These six labeled tree topolo-
gies correspond to Type-1 NJ cones (Section 3.1.1), where each equivalence class consists
entirely of cherry-picking orders that satisfy Property 1. The labeled tree topologies are dis-
tinguished based on reflection symmetry with respect to the central taxon.
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Fig. B2: Type 2 labeled tree topologies for Property 1. These 21 labeled tree topolo-
gies correspond to Type-2 NJ cones (Section 3.1.1), where each equivalence class contains at
least one, but not all, cherry-picking orders that violate Property 1. The labeled tree topolo-
gies are distinguished based on reflection symmetry with respect to the central taxon.
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Fig. B3: Type 3 labeled tree topologies for Property 1. These three labeled tree
topologies correspond to Type-3 NJ cones (Section 3.1.1), where each equivalence class con-
sists entirely of cherry-picking orders that violate Property 1. The labeled tree topologies are
distinguished based on reflection symmetry with respect to the central taxon.
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Fig. B4: Labeled tree topologies that satisfy Property 3. These 16 labeled tree topolo-
gies represent the complete set of NJ cones that satisfy Property 3 (Section 3.1.2). The labeled
tree topologies are distinguished by their reflection symmetry relative to the central taxon.
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Fig. B5: Two labeled tree topologies that always satisfy Property 2. For any admix-
ture fraction α ∈ (0, 1), πα(C(4,3)(5,1)) and πα(C(4,3)(5,2)) are the only two induced NJ

cones in which every dissimilarity vector d(4) satisfies Property 2. (A) Labeled tree topology
corresponding to the cone C(4,3)(5,1). (B) Labeled tree topology corresponding to the cone
C(4,3)(5,2). The labeled tree topologies are distinguished based on reflection symmetry with
respect to the central taxon.
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