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Multiomic analysis of malignant pleural 
mesothelioma identifies molecular axes 
and specialized tumor profiles driving 
intertumor heterogeneity

Malignant pleural mesothelioma (MPM) is an aggressive cancer with rising 
incidence and challenging clinical management. Through a large series 
of whole-genome sequencing data, integrated with transcriptomic and 
epigenomic data using multiomics factor analysis, we demonstrate that the 
current World Health Organization classification only accounts for up to 
10% of interpatient molecular differences. Instead, the MESOMICS project 
paves the way for a morphomolecular classification of MPM based on four 
dimensions: ploidy, tumor cell morphology, adaptive immune response 
and CpG island methylator profile. We show that these four dimensions are 
complementary, capture major interpatient molecular differences and are 
delimited by extreme phenotypes that—in the case of the interdependent 
tumor cell morphology and adapted immune response—reflect tumor 
specialization. These findings unearth the interplay between MPM 
functional biology and its genomic history, and provide insights into the 
variations observed in the clinical behavior of patients with MPM.

Malignant pleural mesothelioma (MPM) is a rare and aggressive disease 
associated with asbestos exposure1. The World Health Organization 
(WHO) histological classification distinguishes three major types with 
prognostic value: epithelioid (MME), biphasic (MMB) and sarcomatoid 
(MMS)2. In the past decade, genomic studies uncovered molecular profiles 
(clusters) related to MPM’s histopathological classification, each enriched 
for somatic alterations in known cancer genes (for example, BAP1 in MME 
and TP53 in MMS)3–5. We and others undertook unsupervised analyses of 
these data, revealing a molecular continuum of types that explained the 
prognosis of the disease more accurately than any reported discrete clus-
ter6,7. MPM interpatient heterogeneity at the biological and clinical level is 
therefore expected to be sufficiently explained by the histopathological 
classification, with phenotypes ranging from MME to MMS8,9.

Nevertheless, the full extent of MPM phenotypes and the mecha-
nisms by which they evolved are poorly understood. Histopathological 

features (such as architectural subtypes) and molecular features (such 
as aneuploidy and immune infiltration) were shown to be independ-
ent of histopathological type8,9, suggesting that there are additional 
sources of heterogeneity that remain unexplained. In addition, 
although malignant transformation and cancer development can 
depend on a wide range of genomic aberrations10–12, genomic events 
have not been fully described in MPM as previous efforts have been 
restricted to profiling only exomes or a reduced representation of 
genomes3–5,13. As a result, biological functions performed by tumor 
cells, and the role of genomic events in shaping these functions, remain 
largely unknown, hindering any meaningful progress in the diagnosis, 
classification and treatment of the disease8.

We designed the MESOMICS study to uncover the main sources 
of molecular variation explaining MPM intertumoral heterogeneity, 
and to identify the underlying biological functions. Using multiomic 
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alternative pathways. Differential gene expression analyses showed 
that, as reported in other tumor types12, the most upregulated enriched 
pathway in WGD-positive (WGD+) versus WGD-negative (WGD−) cases was 
E2F targets (q value = 0.048; Supplementary Tables 9 and 10), although 
we could not replicate this result in the TCGA cohort4, possibly due to 
the difficulty of replicating such findings in low-sample-size series (n = 11 
WGD+ samples). The CIMP factor also ranged between two extreme 
profiles: CIMP-low and CIMP-high (Fig. 1e). A well-known effect of the 
CIMP-high phenotype is epigenetic silencing of tumor suppressor 
genes16. In line with this, we identified five Catalogue of Somatic Muta-
tions in Cancer (COSMIC) tumor suppressor genes17, whose expression 
was negatively correlated with both the CIMP index and the methylation 
level of their CpG island(s): CBFA2T3, FBLN2, PRF1, SLC34A2 and WT1 
(median q value = 2.6 × 10−3; Supplementary Table 11).

We trained latent factor-based survival models and tested their 
performance over previously proposed prognostic factors to evaluate 
to what extent each latent factor captured variability predictive of 
prognosis (Methods). While individually they provided a prediction 
value similar to each other, when combining the four latent factors 
there was an increase in their area under the receiver operating char-
acteristic curve value, suggesting that they capture molecular char-
acteristics with independent prognostic value, being informative of 
MPM progression in a complementary manner (Extended Data Fig. 5,  
Supplementary Fig. 3 and Supplementary Tables 12–20). In line with 
evidence from multiple cancer types12, survival was lowest for the 
greatest ploidy (Fig. 1f). As expected, samples in the lower extreme of 
the morphology factor, enriched for sarcomatoid tumors, presented 
the worst prognosis. The adaptive response factor linked hot tumors 
(tumors with a high level of immune infiltration) with better survival, 
whereas CIMP-low tumors had better survival than CIMP-high tumors 
(Fig. 1f). The previously described proxies also demonstrated prog-
nostic value in the MESOMICS cohort, and allowed for validation of 
the prognostic value of the latent factors in the validation cohorts 
(Extended Data Fig. 4d–g). Probably due to the limited power and a 
potential effect of histology, the prognostic value of the ploidy and 
CIMP factors was not statistically significant when analyzing MME 
samples only; however, their respective effect size remained similar 
to those identified in the entire cohort (Supplementary Fig. 3). We 
additionally validated the existence of the four dimensions as well as 
their prognostic values in previously published cohorts (Supplemen-
tary Tables 21 and 22).

Finally, combining molecular and drug response data for 59 MPM 
cell lines from Iorio et al.18, de Reyniès et al.5 and Blum et al.7, we were 
able to evaluate the therapeutic value of the ploidy, morphology and 
CIMP factors (the lack of microenvironment in cell culture models did 
not allow for replication of the adaptive response factor), by assessing 
the impact that cell line position along each latent factor had on the 
response to candidate drugs (Extended Data Fig. 6, Supplementary Fig. 4  
and Supplementary Tables 23–26). Significant drug responses associ-
ated with the different factors were entirely orthogonal (Extended 
Data Fig. 6a), highlighting the fact that MOFA latent factors capture 
independent axes of heterogeneity in both tumoral mechanisms and 
therapeutic responses. Therefore, both survival and cell line analyses 
showed that these axes of variation are clinically relevant and have the 
potential for translation into clinical practice.

Task specialization analyses reveal diverse tumor strategies
Samples along the interdependent morphology and adaptive response 
factors formed a triangular shape delimited by three extremes (Fig. 2a  
and Supplementary Fig. 5). The well-established Pareto optimum the-
ory19 (ParetoTI method) predicted that this pattern results from natural 
selection for cancer tasks, with specialist tumors close to the vertices 
of the triangle and generalists in the center (triangle fit P value = 0.001; 
Fig. 2b). Integrative gene set enrichment analysis (IGSEA) pointed 
to the following cancer tasks and tumor phenotypes: cell division, 

analyses combining genomic, transcriptomic and epigenomic data on a 
novel cohort of 120 MPM tumors (Supplementary Tables 1–3), we show 
that the current histopathological classification only explains a fraction 
of the molecular heterogeneity of the disease, while ploidy, adaptive 
immune response and CpG island methylation are as important. Taking 
advantage of a large cohort of whole-genome sequencing (WGS) data, 
we map the molecular landscape of 120 MPMs and elucidate the link 
between genotype and phenotype.

Results
Multiomic analyses uncover four axes of molecular variation
We first found that the current histopathological classification only 
accounts for up to 10% of the interpatient molecular differences (2–10%, 
depending on the molecular layer, with an average of 6%), leaving 90% 
unexplained (Fig. 1a). We then undertook an unsupervised decompo-
sition of the interpatient molecular heterogeneity using Multi-Omics 
Factor Analysis (MOFA)14, integrating genomic, transcriptomic and epi-
genomic data. We identified four independent and reproducible latent 
factors individually explaining more than 10% of molecular variation in 
at least one molecular layer, and collectively up to 61% of interpatient 
differences (19–61%, depending on the molecular layer, with an average 
of 33%; Fig. 1a, Extended Data Figs. 1–3, Supplementary Fig. 1 and Supple-
mentary Tables 4–7). Only latent factor 2 (LF2) was associated with the 
histopathological classification, the recent artificial intelligence score 
based on digital pathology15 and the previously proposed molecular 
classifications3–7 (median q value = 6.94 × 10−11; Fig. 1b). Therefore, LF1, 
LF3 and LF4 capture three prominent sources of biological variation 
overlooked by previous histopathological and genomic studies.

LF1 (the ploidy factor) is largely explained by tumor ploidy 
(r = 0.87; Fig. 1c,d). LF2 (the morphology factor) separates the main 
histopathological types and thus summarizes the morphological and 
related molecular classifications (Fig. 1a–c). LF3 (the adaptive response 
factor) summarizes immune infiltration with adaptive response effec-
tors (lymphocytes) (Fig. 1c). For LF2 and LF3, enhancer methylation 
was the major molecular layer captured (Fig. 1a), partly explained by its 
implication in the tumor–immune interaction phenotype captured by 
LF3, and its variability in MPM samples is probably driven by cell-type 
heterogeneity (Supplementary Fig. 2 and Supplementary Tables 5, 6 
and 8). The major feature captured by LF4 (the CpG island methylator 
phenotype (CIMP) factor) was methylation at gene body and promoter 
regions, and most of its molecular variation was strongly associated 
with the CIMP index (r = 0.92; Fig. 1c,e). We then identified proxies 
to facilitate the interpretation of the latent factors and their imple-
mentation in the clinical setting: aneuploidy for LF1; the percentage 
of sarcomatoid component as reported by pathologists for LF2; an 
adaptive versus innate immune response score (Methods) for LF3; and 
a five-gene CIMP index proxy (Methods) for LF4. LF1, LF3, LF4 and their 
proxies were statistically independent of histopathological type (that 
is, all histological types can be either high or low ploidy, have high or 
low adaptive immune responses and have a high or low CIMP index), 
further confirming that these latent factors represent independent 
sources of molecular variation (Extended Data Fig. 4a–c).

In line with our previous observations6, tumor samples did not 
form clusters in MOFA but rather gradients between extreme molecu-
lar profiles (Fig. 1d,e). The ploidy factor ranged between a genomic 
near-haploidization (GNH) and a whole-genome doubling (WGD) profile, 
with a gradient of intermediate ploidies due to various levels of chromo-
some arm and focal amplifications and deletions (Fig. 1d). In contrast 
with the features found associated with the GNH subtype identified in 
the The Cancer Genome Atlas (TCGA) cohort4, the single near-haploid 
sample, MESO_108, had a ploidy of 1.10, almost no copy-neutral loss 
of heterozygosity (LOH) (<1%) and no SETDB1/TP53 mutations and did 
not undergo WGD. Therefore, this sample does not correspond to the 
GNH subtype as described by Hmeljak and colleagues4, but to another 
possible genomic trajectory, where genomic instability is driven by 
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tumor–immune interaction and acinar phenotype (Fig. 2c and Sup-
plementary Tables 27–30 for archetypes, IGSEA significant pathways 
and q values).

Tumors specialized in the cell division task displayed upregu-
lation of these pathways, as reported by Hausser et al. in multiple 
tumor types20. This phenotype was enriched for nonepithelioid 
tumors and presented higher levels of necrosis, higher grade and 
a greater percentage of infiltrating innate immune response cells 
(neutrophils) (median q value = 0.005). Cell division specialization 
was supported by high expression levels of the proliferation marker 
MKI67 and increased genomic instability (estimated from genomic, 
transcriptomic and epigenomic data; median q value = 1.97 × 10−4). 
Tumors specialized in the tumor–immune interaction task carried 
upregulated immune-related pathways, high expression of immune 
checkpoint genes and high immune infiltration with an enrichment 
for adaptive response cells: B lymphocytes, CD8+ T cells and regula-
tory T cells (median q value = 2.73 × 10−3). The cell division and tumor–
immune interaction specialists also showed high expression of hypoxia 

response pathways and common enrichment for pathways in the inva-
sion and tissue remodeling universal cancer task. Indeed, we found 
a higher epithelial-to-mesenchymal transition (EMT) score among 
tumors in this area of the Pareto triangle, driven by upregulation of 
mesenchymal genes and hypomethylation of their associated enhanc-
ers (median q value = 1.61 × 10−6). In line with in vitro studies showing 
that asbestos may induce EMT in MPM21, we found a positive correla-
tion between the expression of mesenchymal genes and asbestos 
exposure score (r = 0.44 and q value = 0.01) and a negative correlation 
between this score and enhancer methylation of mesenchymal genes 
(r = −0.33 and q value = 0.02). We also observed overexpression of 
neoangiogenesis-related genes, corroborating the ability of these 
tumors to remodel their environment.

The last extreme phenotype was characterized by samples with aci-
nar morphology, presenting a very structured tissue organization with 
epithelial cells tightly linked into tubular structures, and correlated 
with the presence of monocytes and natural killer cells (innate immune 
response cells) (median q value = 0.022). This phenotype presented 
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the lowest EMT score, with overexpression of epithelial markers such 
as cell adhesion molecules (median q value = 1.21 × 10−3), corroborating 
the importance of tissue organization in this phenotype, and also low 

levels of MKI67 expression, indicating slow growth. This phenotype 
showed no particular tumoral specialization in any task based on the 
few IGSEA upregulated pathways. In line with the better prognosis 
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reported for this subtype8, the acinar phenotype is characterized by the 
highest levels of global methylation22 (q value = 5.58 × 10−10). Altogether, 
these data provide a biological understanding of the molecular and 
phenotypic heterogeneity characteristic of MPM tumors.

WGS uncovers a diverse genomic landscape
We found 97% (111/115) of MPM tumors harboring at least one large 
genomic event (copy number variant (CNV), amplicon, homologous 
recombination deficiency (HRD), chromothripsis or aneuploidy;  
Fig. 3a). As captured by the ploidy factor, MPM samples ranged from hap-
loid to tetraploid (Fig. 1d). The average CNV profile was highly consistent 
between cohorts (Supplementary Fig. 6), with several recurrent chromo-
some arm-level CNVs, as well as focal alterations encompassing known 
cancer genes (Fig. 3b and Supplementary Tables 31–35). As previously 
reported23, all of the MTAP alterations co-occurred with CDKN2A/B (Fig. 3a  
and Supplementary Tables 36 and 37). We also found recurrent dele-
tions of a prominent immune recognition gene, B2M (chr15q14; Fig. 3b).

A comprehensive analysis of mutational signatures, encompass-
ing single-base substitutions, CNVs and structural variants24,25, allowed 
us to identify the processes leading to particular somatic alteration 
patterns (Extended Data Fig. 7). A total of ten active single-base sub-
stitution signatures were detected in MPM genomes (Extended Data 
Fig. 7b); all corresponded to known COSMIC signatures and none was 
associated with asbestos exposure, as was previously reported3,4. Six 
tumors were found to have extrachromosomal DNA (ecDNA) (Sup-
plementary Fig. 7 and Supplementary Table 38), and in the one sample 
with transcriptomic data we found increased expression of the genes 
predicted to be present on the ecDNA, including the known oncogene 
BRIP1 (Fig. 3c). We observed that the aforementioned ecDNA sample 
co-occurred with, and may be fueled by, kataegis26 (Supplementary 
Fig. 8). Overall, kataegis was rarely seen in our cohort, contributing 
to only 2% of the MPM clustered mutations (Supplementary Tables 39  
and 40). The identified complex mutational processes included a pat-
tern compatible with chromothripsis. This was observed in 20% of the 
samples (Fig. 3a, Supplementary Fig. 9 and Supplementary Table 39)  
and also at the transcriptomic level, as fusion transcripts, in half of 
the positive samples (Supplementary Fig. 10a and Supplementary  
Tables 41–43). A signature of clustered structural variants was detected 
and significantly associated with a high structural variant load and 
chromothripsis (Supplementary Fig. 10b,c and Supplementary  
Tables 41 and 42). For one sample (MESO_019), the chromothripsis 
region overlapped with an ecDNA region, suggesting that chromoth-
ripsis may have been the source of the circular amplification (Fig. 3c). 
Finally, 23% of the samples showed a HRD phenotype, identified either 
by copy number signatures25 or structural variant pattern-based meth-
ods27 (Supplementary Fig. 11 and Supplementary Table 40). Among 
these samples, five harbored pathogenic germline mutations (from the 
ClinVar database) in one of 26 genes known to be involved in homologous 
recombination28—significantly more than the two mutations reported in 
the 77% of samples without HRD (Fisher’s exact test, P value = 0.00587).

We detected an HRD signature in nine out of 21 MPM cell lines 
from Iorio et al.18, thus validating the high rate of this pattern in MPM. 

In addition, the sensitivity of these cell lines to the clinically approved 
olaparib showed a tendency toward higher sensitivity in HRD samples 
compared with non-HRD samples (Supplementary Fig. 12). This may 
be linked with the results of a clinical trial suggesting a highly complex 
mechanism between the response to this drug and markers for DNA 
repair pathway activity29. Indeed, in contrast with their original hypoth-
esis, patients with BAP1 mutations had poorer survival when treated 
with olaparib than wild-type patients. In line with this observation, the 
olaparib response was positively associated with the prognostic CIMP 
index factor (r = 0.65; Extended Data Fig. 6), meaning that CIMP-low 
samples were more sensitive to this poly-ADP ribose polymerase inhibi-
tor than CIMP-high samples (which are enriched for BAP1 alterations 
(Fig. 5a) and associated with poorer survival (Supplementary Fig. 3)).

Despite the low mutational rate (0.98 nonsynonymous small 
variants per megabase; Supplementary Fig. 13a and Supplementary  
Tables 44–46), MPM tumors carry a particularly high number of struc-
tural variants relative to tumors with similarly low mutational burden 
(Fig. 4 and Supplementary Fig. 13b). The top genes altered by structural 
variants (≥5%) were RBFOX1, NF2, BAP1, MTAP and PCDH15 (Supple-
mentary Fig. 14a). For RBFOX1, 13 out of 39 samples have two separate 
events, with most deleting part of the RNA-binding protein domain 
(Supplementary Fig. 14b). Many of these genomic rearrangements 
resulted in fusion transcripts detected at the transcriptomic level 
(Supplementary Figs. 10a and 15).

Combining the MESOMICS dataset with the two other large datasets 
from Bueno et al.3 and the TCGA4, we reached the sample size (n ≈ 300) 
needed to detect rare driver alterations (1%). The IntOGen pipeline30 
discovered 30 MPM driver genes based on small variants (Supplementary 
Fig. 14c). BAP1, NF2, SETD2, TP53 and LATS2 are all known MPM driver 
genes. Among the other 25 genes, some were previously reported as recur-
rently mutated in MPM (PBRM1, KMT2D, DDX3X, PIK3CA, FBXW7, MGA, 
NF1, SETDB1, MYH9, PTCH1, RHOA and TRAF7)31–33 or altered by structural 
variants (PTPRD and LRP1B)34, two were found overexpressed in MPM cell 
lines (DNMT3B and EZH2)35 and, for another two, germline mutations have 
been discovered, suggesting genetic susceptibility (NCOR1 (ref. 36) and 
MYO5A37). The remaining seven driver genes have, to our knowledge, not 
been previously reported in MPM, but they are all known cancer genes, 
as reported in COSMIC: FAT3, NIN, ARHGAP5, HLA-A, NCOR2, SRGAP3 and 
WNK2. Of note, NF2 and MYH9 (IntOGen drivers) are located within the 
significantly deleted chr22q region, along with TTC28—a gene frequently 
altered by structural variants (Figs. 3a,b and 4). Beyond extending the list of 
putative MPM drivers, combining point mutations with structural variants 
allowed for refinement of the frequency of alterations in key MPM genes  
(Fig. 4 and Supplementary Tables 41–46).

Genomic alterations tune the molecular profiles of MPM
Genomic events were associated with all MOFA latent factors and the 
extreme profiles that they encapsulated, as well as with the phenotypic 
specialists captured by the morphology and adaptive response factors 
(Fig. 5a and Supplementary Tables 47 and 48). Associated alterations 
significantly tuned tumor specialization (P value = 0.003; Methods 
and Extended Data Fig. 8). In addition to ploidy, NCOR2 alterations 

Fig. 3 | Genomic characterization of MPM from the MESOMICS cohort.  
a, Recurrent large genomic events. Top, clinical, epidemiological, morphological 
and technical features per sample. T only represents samples with WGS on 
the tumor sample only. Bottom left, oncoplot describing the genomic events 
per sample. amp, amplification; del, deletion; ND, HRD type not determined. 
Bottom middle, barplot of the frequency of each event within the cohort. Bottom 
right, comparison of the gene expression of cancer-relevant genes belonging 
to frequent deletions detected by GISTIC, with regards to their copy number 
(CN) status. Wild-type (WT) cases correspond to samples without copy number, 
structural variant or single-nucleotide variant events detected. The box plots 
represent the median and interquantile range and the whiskers the maximum 
and minimum values, excluding outliers. The n number above represents the 

number of biologically independent samples for each test. *0.01 < q value ≤ 0.05; 
**0.001 < q value ≤ 0.01; ***q value ≤ 0.001. NRC, normalized read count.  
b, Cohort-level copy number profile (top), with significantly altered regions 
identified by GISTIC in focal peaks (middle) and at the chromosome (chr.) 
arm level (bottom). cnLOH, copy-neutral LOH. c, Data from a patient with 
oncogene amplification due to a chromothripsis event (MESO_019). Left, 
chromosomes involved in the chromothripsis event (outer circle, shattered 
regions; intermediate circle, copy number gain and loss; inner circle, structural 
variants (SVs)). Middle, reconstructed ecDNA structure. Right, gene expression 
in MESO_019 relative to the expression in other tumors of the cohort (quantile). 
Oncogenes found within the ecDNA region are represented in red. The P value 
was determined by two-sided Wilcoxon rank-sum test. kb, kilobases.
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and TERT amplification were associated with the ploidy factor (q val-
ues = 4.3 × 10−18 and 3.3 × 10−4, respectively; Fig. 5a). Thirty-six samples 
(31%) displayed TERT amplification, resulting in a significant increase in 
TERT expression (P value = 1.8 × 10−5; Supplementary Fig. 16a,b). TERT 
amplification was accompanied by an underlying amplification of 

chr5p in 81% of the positive cases. While no association was previously 
detected between TERT promoter mutations and WGD38, here we found 
that both TERT amplification and its increased expression were asso-
ciated with WGD events (P value = 1.6 × 10−10 and 0.009, respectively; 
Supplementary Fig. 16c).

60,100

63
,9

00

53
,2

0052,500

52,500

53,200

PPM1D BRIP1

CD
79

B

a

Proportion of samples

La
rg

e 
ge

no
m

ic
 e

ve
nt

s

CNV Amplicons HRD Other rearrangement
Amplification
Heterozygous deletion
Homozygous deletion
Possible false negative

ecDNA
Complex amplicon
Linear amplicon

Signature CN15
BRCA1 type
BRCA2 type
ND

Chromothripsis WGD
GNH

Aneuploidy

Clinical Exposure

MME
MMB
MMS

Male
Female

Non-smoker
Ex smoker
Smoker

No asbestos exposure
Asbestos exposure Matched

T only

WGS group

Amplicon 1 (ecDNA)

C
opy num

ber

Lo
ss

 (–
)

G
ai

n 
(+

)

WGD+

only

Genomic location
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

60

BAP1
TERT

EZH2 RBFOX1

NF2

CDKN2A/B
MTAP

B2M

TP53

10–5

1

10–30

10–15

30
15

30

0+
–

+
–

+
–

Fo
ca

l (
q 

va
lu

e)

G
IS

TI
C

Pe
rc

en
ta

ge
 o

f
sa

m
pl

es
w

ith
 C

N
V

C
hr

. a
rm

1
2
3
4
5

≥6

–1
–2
–3
–4

WGS group
Asbestos
Smoking

Sex
Type

Aneuploidy

Chromothripsis

HRD

TERT
(5p amp)

Amplicon

BAP1
(3p21.1 del)

MTAP
(9p21.3 del)

CDKN2A/B
(9p21.3 del)

NF2
(22q del)

16%

20%

23%

31%

32%

40%

59%

58%

60%

0 0.25 0.50 0.75

Genes in CN deletion

G
en

e 
ex

pr
es

si
on

 (N
RC

)

Homozygous deletion
Heterozygous deletion
WT

6

8

10

12

******
n = 86 n = 80 n = 78 n = 76

* ***
******
******

b

c

Chr17

Chr10

Chr6

Chr7

0

0.25

0.50

0.75

1.00

CD79B

BRIP1

PPM1D

Genes in ecDNA Other genes

P value = 2.52 × 10–10

Chromothripsis Oncogene overexpression

Chr17

Chr10CN gain

Shattered region

CN loss

SVs

Less expressed than
in m

ost tum
ors

M
ore expressed than

in m
ost tum

ors

G
en

e 
ex

pr
es

si
on

 in
 M

ES
O

_0
19

(q
ua

nt
ile

 o
f c

oh
or

t)

St
ar

t

En
d

Ex
on

BAP1NF2 CDKN2A MTAPSamples

cnLOH

Genomic location (kb)

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01321-1

Genomic alterations in epigenetic regulatory genes (ERGs) have 
previously been shown to drive CIMP in cancer39. In line with this, we 
found enrichment for ERGs (P value = 3.4 × 10−3; Methods and Supple-
mentary Fig. 17), including the mesothelioma drivers NCOR2 and EZH2, 
among the genes highly expressed in CIMP-high tumors, and more 

generally in the list of MPM drivers (q value = 2.1 × 10−5). Chr7q36.1del, 
encompassing EZH2, further tuned the position of the samples along 
the CIMP factor (q value = 5.2 × 10−3; Fig. 5a). EZH2 (enhancer of zeste 
homolog 2) is a histone methyltransferase that functions as part of 
the Polycomb repressive complex 2 (PRC2) complex to promote gene 
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silencing of specific targets40. Indeed, genes whose CpG island meth-
ylation level was highest in CIMP-high tumors were enriched for PRC2 
target genes (P value = 0.01; Fig. 5b). WT1, which is found downregulated 
in CIMP-high tumors, is particularly interesting and a vaccine against 
this PRC2 target is currently being assessed in clinical trials for meso-
thelioma41. Cancers frequently associated with a CIMP-high phenotype 
include colorectal cancer (CRC) and glioma42,43, with BRAF (CRC) and 
IDH1 (glioma) mutations also associated with this phenotype, as well 

as with microsatellite instability in CRC42. Microsatellite instability 
and BRAF/IDH1 mutations were rare or absent events in our series and 
unrelated to the CIMP phenotype (Supplementary Tables 7, 44 and 49), 
suggesting that the mutational processes linked with CIMP phenotype 
in MPM may differ from those of other cancers.

WGD and chromothripsis seemed to push tumors away from the 
tumor–immune interaction phenotype (q values = 0.042 and 0.012, 
respectively; Fig. 5c); indeed, both cell division and acinar phenotypes 
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were characterized by low immune cell infiltration (cold tumors), 
which may be explained by the downregulation of the interferon 
response pathway and B2M expression seen in WGD + MPM tumors 
(q value = 7.4 × 10−17; Supplementary Fig. 18a,b,e and Supplementary 
Tables 9 and 10). These may represent important mechanisms for 
WGD+ tumors to avoid the immune response12,44. Chromothripsis has 
also been associated with low immune infiltration as part of the chro-
mosomal chaos that silences immune surveillance45.

CDKN2A, MTAP and NF2 alterations also converged on cold tumors 
(median q value = 0.003). Within this cold phenotype, TERT ampli-
fication and alterations in TTC28, involved in the mitotic cell cycle, 
moved tumors towards cell division specialization (q values = 1.6 × 10−4 
and 7.4 × 10−4, respectively; Fig. 5c), whereas chr3p21.1del (BAP1, 
DNAH1 and PBRM1) and BAP1 mutations moved tumors toward the 
better-prognosis acinar phenotype (q values = 0.021 and 7.1 × 10−4, 
respectively; Fig. 5c), as expected given the previously reported asso-
ciation between BAP1 alterations and better survival in MPM36. A loss of 
BAP1 (BRCA1-associated protein-1) expression, measured by immuno-
histochemistry, was also associated with this phenotype (r = −0.38 and 
q value = 4.61 × 10−5; Supplementary Fig. 19). Interestingly, an analysis 
of splicing variation found that the morphology factor and acinar phe-
notype were significantly associated with alternative splicing events 
(Supplementary Fig. 20a–f). Major contributions came from events 
in cell adhesion genes, and neuronal progenitor BAF, neuron-specific 
BAF and SWI/SNF complexes, potentially affecting the alternative 
splicing pattern of genes such as BCL11A and SMARCE1 (Supplementary 
Fig. 20g,h). The fact that these genes ( just like BAP1) have important 
roles in chromatin remodeling suggests that disruption of chromatin 
remodeling pathways may molecularly define the acinar phenotype.

The specialization of tumors can be influenced by early genomic 
events. Estimates of the timing of WGD, TERT amplification and 
copy-neutral LOH in the few samples (n = 6) with such events where 
a subclonal deconvolution was possible showed that our samples fall 
well within the values observed across >2,500 tumors of the Pan-Cancer 
Analysis of Whole Genomes Consortium46 (empirical P values = 0.16–
0.79; Fig. 5d and Supplementary Fig. 21). Thus, these genomic events 

may indeed have occurred more than 10 years before diagnosis. Three 
out of the six patients were exposed to asbestos (of the other three 
patients, two had no known exposure and one had unknown exposure), 
among whom two had well-documented periods of exposure, from 56 
to 21 years before diagnosis for MESO_048 (including the estimated 
timing of LOH) and from 54 to 50 years before diagnosis for MESO_057, 
more than 50 years before the estimated timing of TERT amplifica-
tion, suggesting that genomic events can occur both concomitantly 
with and subsequent to asbestos exposure, although conclusive evi-
dence of the timing of these alterations will need to be investigated 
in hypothesis-driven studies. Using a multiregional subcohort from 
13 patients, we found intratumor heterogeneity in all factors except 
the ploidy factor, further suggesting that genomic events are mostly 
early and thus do not vary much across regions (Extended Data Fig. 9,  
Supplementary Fig. 22 and Supplementary Tables 50–52). Finally, 
we detected neutral tumor evolution close to the acinar phenotype 
(P value = 0.0024; Supplementary Fig. 23) at extreme values of the 
morphology and adaptive response factor, suggesting that tumors 
with this profile were even less influenced by recent genomic events.

Discussion
The MESOMICS project represents a substantial advancement toward 
the comprehensive molecular characterization of MPM, made pos-
sible by inclusion of a large WGS dataset3,4,34 and by the depth of 
the multiomic integrative analyses undertaken. We demonstrated 
that ploidy, adaptive immune response and CpG island methyla-
tion constitute independent sources of molecular variation with 
quantitatively similar impacts on interpatient MPM heterogeneity 
as the histological classification. Despite some individual observa-
tions made in previous studies6,7,13, these three sources of molecular 
variation have been mostly unexplored or unknown because of the 
major focus that was put on refining the histological groups, and 
the lack of comprehensive analysis of a large multiomics dataset. In 
this sense, the unifying framework aspect of our research approach 
allowed us to capture the entire molecular landscape of MPM, sum-
marized in four dimensions.
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Aneuploidy is one of the morphology-independent features pre-
viously reported in MPM4 but poorly characterized. The ploidy factor 
identified tumors that underwent WGD, previously described in mul-
tiple cancer types as an early transformative event that dramatically 
destabilizes cell genetics and fuels tumor development47. WGD tends 
to be favored along the evolutionary course of low-mutational-burden 
tumors like MPM12 and is suspected to serve as a genetic spare tire in 
case of lethal alterations48. As a consequence, this event shapes the 
cellular phenotype associated with specific vulnerabilities12.

The CIMP has been reported in several cancer types, most notably 
CRC and glioblastoma, with inconsistent associations with survival49–51. 
Here we provide further evidence, to that of Blum et al.7, of distinct 
variation in CIMP index within mesothelioma tumors, and have shown 
that a high CIMP index is independent of morphology and predictive 
of poorer outcome. While a universal cause for a CIMP-high phenotype 
has not been established, it has been previously associated with altera-
tions in ERGs39,52. Indeed, our data suggest that some mesothelioma 
tumors may acquire a CIMP-high phenotype through the activity of the 
ERG EZH2, to hypermethylate and silence specific target genes. Such 
a strategy may be warranted to promote malignant transformation in 
a lowly mutated tumor such as mesothelioma35.

Pareto task inference uncovered three specialized tumor pro-
files in the space delimited by the interdependent morphology and 
adaptive response factors, presumably resulting from pressures 
of the microenvironment, each selecting for adaptive alterations 
and phenotypic traits. Cell division specialists adopted a fast repro-
duction strategy that was expected to result from unfavorable and 
unpredictable environments53, with their genomic instability suggest-
ing adaptation through evolutionary leaps54,55. Immune interaction 
specialists adopted an immune evasion or camouflage strategy. Both 
phenotypes also presented characteristics of invasion and tissue 
remodeling specialists20. These tumors tended to occur in intensely 
asbestos-exposed individuals, suggesting that chronic inflammation 
(promoted by asbestos exposure56) may have created the unfavora-
ble environment responsible for selective pressure. Finally, acinar 
phenotype specialists adopted a structured tissue organization and 
slow growth strategy. This suggests an equilibrium strategy that is 
expected to be favorable in stable, resource-rich environments with 
limited predation57, in line with the lower level of asbestos exposure 
and limited inflammation and immune infiltration observed in these 
tumors. Consistent with limited environmental pressures, acinar 
tumors were enriched for neutral evolution and BAP1 alterations—an 
event that, when combined with weak asbestos exposure in mice, 
greatly increased mesothelioma occurrence over weak asbestos 
exposure alone58.

Overall, the four molecular factors are highly informative and cap-
ture specific profiles that are complementary in predicting tumor phe-
notype and aggressiveness. The fact that they are all independent and 
mostly unrelated to the morphology factor (histology) means that dis-
regarding them might not only jeopardize the success of any treatment 
but also miss opportunities to stratify patients based on their molecular 
profile (Fig. 6). The tightly correlated proxies that we have identified 
could serve as biomarkers for response to specific therapies (such as 
immunotherapy for LF3) and could be easily tested in a hypothesis-driven 
study design. Subsequently, integrating these complementary factors 
would help to stratify patients for preselected-cohort clinical trials59, a 
process that has proven to be beneficial in small-cell lung cancer, another 
aggressive recalcitrant cancer60–62. The results of the MESOMICS project 
pave the way for the establishment of a more clinically relevant morpho-
molecular classification of MPM tumors.
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Hospital, Assistance Publique–Hôpitaux de Paris, Paris, France. 23Tumorothèque Centre Hospitalier Universitaire de Nantes, Nantes, France. 24Université 
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Methods
This section briefly describes the main methods (see Supplementary 
Information for details on the data, processing and analyses).

Ethics
All of the methods were carried out in accordance with relevant guide-
lines and regulations. This study is part of a larger study, the MESOMICS 
project, aiming to perform comprehensive molecular characterization 
of MPM, and was approved by the International Agency for Research 
on Cancer (IARC) Ethics Committee (project number 15-17). The sam-
ples used in this study belong to the virtual biorepository French 
MESOBANK. Written, informed consent was obtained from all par-
ticipants and no participant compensation was provided.

Clinical data
Age at diagnosis (in years), sex (male or female), smoking status (non-
smoker, ex smoker or smoker), asbestos exposure (exposed or non-
exposed), previous treatment with chemotherapy drugs (yes or no), 
treatment information (surgery, chemotherapy, radiotherapy, immu-
notherapy or cancer history) and survival data (calculated in months 
from surgery to the last day of follow-up or death) were collected for 
all 123 patients. The median age at diagnosis was 67.5 years and 73.3% 
of patients were male.

MESOMICS cohort
The MESOMICS cohort includes biological material from 123 patients 
with MPM (including three nonchemonaive patients who were excluded 
from all analyses unless explicitly mentioned) kindly provided by the 
French MESOBANK and annotated with detailed clinical, epidemiologi-
cal and morphological data. Samples were collected from chemonaive 
surgically resected tumors, applying local regulations and rules at the 
collecting site, and included patient consent for molecular analyses, 
as well as the collection of de-identified data. Samples underwent an 
independent pathological review by the French MESOPATH refer-
ence panel, who determined that of the 120 MPM tumor samples, 79 
belonged to the MME type, 26 were MMB and 15 were MMS. Of the 105 
samples with an epithelioid component (79 MME and 26 MMB), solid, 
acinar, trabecular and tubulopapillary architectural patterns were the 
most frequent in the series (n = 37, 31, 16 and 14, respectively).

Discovery and intratumoral heterogeneity cohorts
Among the 123 patients with MPM, 13 had two tumor specimens col-
lected for the study of intratumoral heterogeneity (ITH). The one with 
the highest tumor content, estimated by pathological review, was 
selected for this descriptive study and is reported in Supplementary 
Tables 1–3, and the other region is described in Supplementary Tables 
50–52. Additionally, three patients have been reported as nonchem-
onaive and they were excluded from the analyses except if explicitly 
mentioned otherwise in the Methods.

Pathological review
For all 136 samples (123 tumors plus 13 additional regions), a hema-
toxylin and eosin stain from a representative formalin-fixed, paraffin 
embedded block was collected for pathological review. Our pathologist 
(F.G.-S.) performed a detailed pathological review and classified all 
tumors according to the 2015 WHO classification63,64. The hematoxylin 
and eosin stain was also used to assess the quality of the frozen material 
selected for molecular analyses and to confirm that all frozen samples 
were at least 70% tumor cells.

Artificial Intelligence analysis
Whole-slide image-based artificial intelligence prognostic scores were 
computed using the artificial intelligence MesoNet model based on 
morphological features, developed by Owkin—an artificial intelligence 
for medical research company15.

Statistical analyses
All analyses were performed in R version 4.1.2. All tests involving 
multiple comparisons were adjusted using the Benjamini–Hochberg 
procedure, controling the false discovery rate using the p.adjust R 
function (stats package version 3.4.4). To limit false discoveries, we 
took a conservative q value threshold of 0.05. In addition, in line with 
the American Statistical Association statement on the misuse of P val-
ues65, which intends to ‘steer research into a “post P < 0.05 era"’, we 
report all P and q values, even those that may be closer to arbitrary 
thresholds such as the 5% threshold. To improve the reproducibility 
of our results, we summarize in Supplementary Tables 21 and 22 all  
P and q values reported in the text and main figures, along with details 
about the tests performed (hypothesis, model and sample size) and 
replication performed with additional cohorts.

Survival analysis
Survival analysis has been performed using Cox’s proportional hazard 
model from which the significance of the hazard ratio between the 
reference and the other levels has been evaluated using Wald tests. We 
assessed the global significance of the model using the logrank test 
statistic (R package survival version 2.41-3) and drew Kaplan–Meier 
and forest plots using the R package survminer (version 0.4.2).

DNA extraction
Included samples were extracted using the Gentra Puregene Tissue Kit 
(4 g) (158667; Qiagen), following the manufacturer’s instructions. All 
DNA samples were quantified using the fluorometric method (Quant-iT 
PicoGreen dsDNA Assay; Life Technologies) and assessed for purity by 
NanoDrop (Thermo Scientific) 260/280 and 260/230 ratio measure-
ments. The DNA integrity of the fresh frozen samples was checked with 
a TapeStation system (Agilent Biotechnologies) using Genomic DNA 
ScreenTape (Agilent Biotechnologies).

RNA extraction
Included samples were extracted using the AllPrep DNA/RNA  
extraction kit (Qiagen) following the manufacturer’s instructions. 
All RNA samples were treated with DNAse I for 15 min at 30 °C. The 
RNA integrity of the frozen samples was checked with a TapeStation 
system (Agilent Biotechnologies) using RNA ScreenTape (Agilent 
Biotechnologies).

Because of unsuccessful extraction (impacting either the quality 
or the quantity), we obtained different numbers of MPM samples for 
which WGS, DNA methylation or RNA sequencing (RNA-seq) data are 
available (Supplementary Tables 1–3).

DNA sequencing
Sequencing. WGS was performed by the Centre National de Recherche 
en Génomique Humaine (Institut de Biologie François Jacob, CEA) on 
130 fresh frozen MPMs, 54 of which with matched normal tissue or 
blood samples. We used an Illumina TruSeq DNA PCR-Free Library 
Preparation Kit (20015963; Illumina) according to the manufacturer’s 
instructions and sequenced them on a HiSeq X Five platform (Illumina) 
as paired-end 150-base pair reads. Samples paired with matched normal 
tissue or blood had a target sequencing depth of 60× and other samples 
had a target depth of 30×.

Data processing. WGS reads were mapped to the reference genome 
GRCh38 (with ALT and decoy contigs) using our in-house workflow 
(https://github.com/IARCbioinfo/alignment-nf; release version 1.0)66. 
In summary, this workflow relies on the Nextflow domain-specific 
language67 version 20.10.0.5430 and consists of four steps: read map-
ping (software BWA68; version 0.7.15), duplicate marking (software 
samblaster69; version 0.1.24), read sorting (software sambamba70; 
version 0.6.6) and base quality score recalibration using GATK71  
(version 4.0.12).
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Variant calling and filtering on DNA. We performed somatic variant 
calling using the software Mutect2 (ref. 72) from GATK version 4.1.5.0, as 
implemented in our Nextflow workflow (https://github.com/IARCbioinfo/
mutect-nf; release version 2.2b). Multiregion samples were processed 
jointly using the multisample calling mode of Mutect2. We called ger-
mline variants using Strelka2 (ref. 73) version 2.9.10-0 using our Nextflow 
workflow (https://github.com/IARCbioinfo/mutect2-nf; release version 
1.2a). Annotation was performed with ANNOVAR74 (16 April 2018) using 
the GENCODE version 33 annotation, COSMIC version 90 and REVEL data-
bases. To call somatic variants on tumor-only samples (72/115), a similar 
procedure was performed (Mutect2 tumor-only mode) but including 
further germline-filtering steps using a random forest classifier.

CNV calling. Somatic CNVs were called using the PURPLE software75 
version 2.52, as implemented in our Nextflow workflow (https://github.
com/IARCbioinfo/purple-nf; version 1.0). We used a total of 57 matched 
WGS samples of MPM (including multiregion samples) for benchmark-
ing the tumor-only mode of PURPLE. We ran PURPLE twice for each 
matched sample: first using the matched WGS normal/tumor pair as 
input and second using only the tumor WGS sample as input.

Structural variant calling. To identify somatic structural variants, 
including insertions, deletions, duplications, inversions and translo-
cations, we built a consensus structural variants call set by integrating 
SvABA76 version 1.1.0, Manta77 version 1.6.0 and DELLY78 version 0.8.3 
calls with SURVIVOR79 version 1.0.7. Somatic structural variants (mini-
mum structural variant size = 50 base pairs) identified by at least two 
callers and single-caller predictions with a minimum read support of 
15 pairs (including paired-end and split-read evidence) were included 
in the consensus set of each matched sample.

RNA-seq
Sequencing. RNA-seq was performed on 126 fresh frozen MPM sam-
ples in the Cologne Center for Genomics, of which 109 MPM samples 
belonged to the discovery cohort (Supplementary Tables 1–3). Librar-
ies were prepared using the Illumina TruSeq Stranded mRNA Sample 
Preparation Kit (20020595; Illumina) and the pool was sequenced 
using an Illumina NovaSeq 6000 sequencing device and a paired-end 
100-nucleotide protocol.

Data processing. The 126 raw read files from the MESOMICS cohort 
and the 21 files from the Iorio and colleagues18 mesothelioma cohort 
(downloaded from the European Genome-phenome Archive (EGA) 
and Sequence Read Archive websites; datasets EGAS00001000828 
and PRJNA523380, respectively) were processed in three steps using 
the RNA-seq processing workflow based on the Nextflow language 
and accessible at https://github.com/IARCbioinfo/RNAseq-nf (release 
version 2.3)66. Then, reads were realigned locally using ABRA2 (ref. 80); 
(workflow https://github.com/IARCbioinfo/abra-nf; release version 
3.0) and base quality scores were recalibrated using GATK (workflow 
https://github.com/IARCbioinfo/BQSR-nf; release version 1.1). Once 
processed, expression was quantified using StringTie software (version 
2.1.2; Nextflow pipeline accessible at https://github.com/IARCbioinfo/
RNAseq-transcript-nf; release version 2.2).

The raw read counts of the 59,607 genes in the expression data 
matrix, from the MESOMICS, TCGA and Bueno cohorts3,4, from which 
we removed non-chimionaif samples, were normalized using the 
variance-stabilizing transform (vst function from R package DESeq2 
version 1.14.1); this transformation enables comparisons between 
samples with different library sizes and different variances in expres-
sion across genes.

DNA methylation
EPIC 850K methylation array. Epigenome analysis was performed on 
119 MPMs (Extended Data Fig. 1 and Supplementary Tables 1–3), two 

technical replicates and three adjacent normal tissues. Epigenomic 
studies were performed at the IARC with the Infinium EPIC DNA meth-
ylation beadchip platform (Illumina) used for the interrogation of 
over 850,000 CpG sites (dinucleotides that are the main target for 
methylation).

Data processing. The resulting IDAT raw data files were preprocessed 
using the R packages minfi (version 1.34.0) and ENmix (version 1.25.1). 
Raw data were then normalized using functional normalization (func-
tion preprocessFunnorm; minfi), to reduce technical variation within 
the data, and probe removal steps were performed to ensure reliability 
and accuracy of the final dataset. This resulted in a normalized, filtered 
dataset of 781,245 probes for 139 samples. Finally, beta and M val-
ues were extracted (functions getBeta and getM; minfi). Nine probes 
recorded M values of −∞ for at least one sample, and these values were 
replaced with the next lowest M value in the dataset. The three normal 
tissues and one remaining technical replicate were then removed from 
the beta and M matrices for the subsequent analyses. This resulted in 
135 samples: 122 for discovery and an additional 13 for ITH analyses.

CIMP index. A CIMP index value was calculated for all samples as 
follows. The mean beta value across all probes located within CpG 
islands was calculated per sample, resulting in beta values for 24,891 
and 24,924 CpG islands, MESOMICS (EPIC array), TCGA4 and Iorio and 
colleagues18 cell lines (HM450K array), respectively. The CIMP index 
was then calculated as the proportion of these 24,891 or 24,924 islands 
with ≥30% methylation (beta value ≥ 0.3) per sample.

Integrative unsupervised analyses
We performed four series of analyses with different subsets of samples: 
(1) discovery analyses with all of our discovery cohort (MESOMICS 
cohort; 120 samples), for which WGS, RNA-seq and/or 850K methyla-
tion array data were available; (2) and (3) replication analyses with the 
already published data from Bueno3 (181 samples after exclusion of 
nonchemonaive samples) and Hmeljak and colleagues4 (TCGA cohort; 
73 samples in the curated list), respectively; (4) combined analyses 
integrating the MESOMICS, Bueno and TCGA cohorts3,4 with a total 
of 374 samples; and (5) replication combining cell lines from the Iorio 
study18 (for which whole-exome sequencing, expression arrays and 
RNA-seq, 450K methylation arrays and drug responses in the form 
of half-maximum inhibitory concentration scores are available (21 
samples; 265 drugs)) and the de Reyniès5 and Blum et al.7 datasets (for 
which expression arrays and drug responses are available (38 samples; 
three drugs)). In addition, some single-omic analyses are also described 
in this section.

Preprocessing of expression data. We used normalized read count 
matrices (see the section ‘RNA-seq’) for subsets (1)–(4), encompassing 
59,607 genes. Among these genes, those having less than one fragment 
per kilobase of exon per million mapped fragments (FPKM) difference 
across the samples were excluded from the unsupervised analyses. 
Also, to mitigate sex influence on the expression profiles, we removed 
genes from the sex chromosomes. For each analysis, the top 5,000 
most variable genes were selected. Similarly, the 5,000 most variable 
genes from the normalized array expression of cell lines (see the sec-
tion ‘Processing of publicly available expression array processing’ in 
Supplementary Methods) were selected. Whenever several probes 
were available for the same gene, the one with the highest intensity 
was selected.

Preprocessing of methylation data. DNA methylation was available 
for both the MESOMICS and TCGA cohorts. First, we extracted the 
M values of the CpGs from the MESOMICS, TCGA4, combined MESOM-
ICS/TCGA and Iorio18 cell line cohorts, respectively81. We excluded sex 
chromosome CpGs, CpGs that did not pass quality control (see the 
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section ‘DNA methylation’ in Supplementary Methods) and those hav-
ing less than 0.1 beta value difference across the (1) 119, (3) 73, (4) 192 
and (5) 59 samples. Based on this annotation, the CpG list representing 
the methylation data was divided according to their association with 
promoters, enhancers or the gene body using the EPIC 850K array 
manifest B5 (see the section ‘Regional methylation analysis’ in Sup-
plementary Methods), resulting in three datasets, respectively named 
MethPro, MethEnh and MethBod. For each analysis and dataset, the top 
5,000 most variable CpGs (calculated from M values) were selected.

Preprocessing of copy number changes. Copy number change data 
were available for the MESOMICS, TCGA and MPM cell line cohorts. 
We assessed the global (total) and minor (minor) allele copy number 
states at the gene level using, respectively, the total (total) and minor 
(minor) copy number estimate given by PURPLE (see the section ‘CNV 
calling’) on the hg38 genome for the MESOMICS cohort and SNP array 
estimates downloaded from the Genomic Data Commons portal for 
the TCGA–MESO cohort4 and from the Cell Model Passports portal 
for the MPM cell lines.

For the three analyses, the resulting value assigned to each gene 
is an average of the copy number estimate of the tumor by taking into 
account the tumor purity (purity) estimated by PURPLE. To avoid redun-
dancy, genes with exactly the same resulting copy number value in all 
samples (because of their genome location proximity) were grouped 
as one single feature in the dataset. Only the genes or groups of genes 
altered in at least three samples were selected. To ensure continuity 
of the data, which is technically necessary for the algorithm, the copy 
number estimates were centered and scaled before being integrated 
into the MOFA algorithm. For consistency, somatic CNVs occurring 
on sex chromosomes were removed and the top 5,000 most variable 
genes or groups of genes were selected to be integrated.

Preprocessing of genomic alterations data. Somatic structural 
variants data were used only for integrative analyses (1) and (4), while 
somatic mutations were used in all analyses. Each gene, altered by 
somatic splicing, structural variants or exonic, damaging mutations 
(see the section ‘Damaging variants and driver detection’ in Supple-
mentary Methods) was integrated in a common dataset. Of note, for 
missense mutations, we used the REVEL annotation included in ANNO-
VAR for predicting the pathogenicity of these variants and we used a 
0.5 cut-off to restrict to the most likely damaging missense events. We 
also removed genes altered in fewer than three samples. For consist-
ency, we selected genes in non-sex chromosomes, protein-coding or 
long noncoding RNA genes, and with expression greater than or equal 
to 0.01 fragment per kilobase of exon per million mapped fragments 
(FPKM) in at least one sample of the cohort, to be sure to include genes 
expressed in mesothelioma. We integrated the resulting datasets as a 
Boolean variable in the following analyses.

Multiomic integrative analyses. To provide an integrative 
low-dimensional summary of the molecular variation across the sam-
ples, we performed continuous latent factors identification using the 
software MOFA (R package MOFA2, version 1.7.0). Indeed, MOFA is 
able to integrate different molecular datasets (layers) by generating 
independent continuous variables, named latent factors, that explain 
most variation from the joint datasets. In total, we performed five analy-
ses: (1) MOFA–MESOMICS (n = 120; Fig. 1 and Extended Data Fig. 1a);  
(2) MOFA–Bueno (n = 181; Extended Data Fig. 1c); (3) MOFA–TCGA 
(n = 73; Extended Data Fig. 1b); (4) MOFA–3 cohorts (n = 374; Extended 
Data Fig. 1d) and (5) MOFA–cell lines, as described above (n = 59; Sup-
plementary Fig. 4). Additionally, we ran MOFA on our discovery cohort, 
including the ITH samples (MOFA–ITH; n = 134) to evaluate the ITH 
within MPM samples.

MOFA was performed independently for each analysis, setting 
the number of latent factors to ten (function runMOFA from the R 

package MOFA2). A summary of all of these runs is given in Extended 
Data Figs. 1 and 2, Fig. 1 and Supplementary Figs. 1 and 4 and coordinates 
and proportions of variance explained for models (1)–(4) are given in 
Supplementary Tables 4–8, while those for MOFA–ITH are given in 
Supplementary Tables 50–52 and those for the cell lines (model (5)) 
are given in Supplementary Tables 23–26. A comparison with other 
multiomic methods is provided in Extended Data Fig. 10 (see section 
'Multiomic integrative analyses details' in Supplementary Methods).

Evolutionary tumor trade-off analyses
Pareto task identification. The Pareto front model was fitted to differ-
ent sets of samples using the ParetoTI R package (https://github.com/
vitkl/ParetoTI; release version 0.1.13), following the above-mentioned 
analyses (1)–(4), and additionally on two different kinds of molecular 
maps: using MOFA (restricting to LF1, LF2, LF3 and LF4) and using 
expression principal component analysis as technical validation (see 
the section ‘RNA-seq’). In brief, the algorithm tries to find polyhedra 
by testing successively 1 to n axes, adding them one after another 
in decreasing order of transcriptomic variance explained. For this 
technical reason, the MOFA latent factors were ordered as follows by 
decreasing transcriptomic variance explained: morphology factor 
(LF2), adaptive response factor (LF3), CIMP factor (LF4) and ploidy 
factor (LF1). For each number n of axes used, ParetoTI identifies the 
position of the n + 1 = k vertices (archetypes) in the molecular map 
defined, and we used 200 bootstraps, each taking 75% of the data to 
measure the variability in archetype position and infer archetype posi-
tions robust to outliers (function fit_pch_bootstrap with the parameters 
bootstrap = T and bootstrap_N = 200; see our code at https://github.
com/IARCbioinfo/MESOMICS_data/blob/main/phenotypic_map/
MESOMICS/PhenotypicMap_MESOMICS.md).

Interpretation of tumor archetypes. To further characterize the phe-
notype of each archetype, we used the proportion of each archetype 
for each sample estimated by ParetoTI. These proportions were used 
as continuous variables to further test the association between each 
archetype and clinical, epidemiological and morphological variables, 
as well as molecular data (Supplementary Tables 27–30).

More specifically, we inferred each archetype phenotype by per-
forming IGSEA on the expression data. To do so, we used the ActivePath-
ways R package (https://github.com/reimandlab/ActivePathways; 
release version 1.1.0), which is a tool able to integrate different sources 
of molecular variation to assess the enrichment of Gene Ontology 
terms by combining P values from different association tests between 
sources and gene-level data. Here we integrated these proportions as 
different axes of molecular variation. We restricted the Gene Ontology 
terms to a minimum size of 20 genes and a maximum size of 1,000 genes 
as the default parameters of ActivePathways. To infer the pathways 
specifically altered in each archetype, we integrated the Pearson’s 
P value correlation of each gene from the expression matrix of 59,607 
genes with the proportion from each archetype and we selected the 
pathways for which the enrichment source only corresponded to the 
tested archetype. We performed two kinds of analyses: one restricted 
to the genes positively correlated with the proportion (to obtain the 
upregulated pathways) and the other restricted to the negatively cor-
related genes (to identify the downregulated pathways).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The genome sequencing, RNA-seq and methylation data have been 
deposited in the EGA database, which is hosted at the European 
Bioinformatics Institute and Centre for Genomic Regulation under 
accession number EGAS00001004812. Because raw omics datasets 
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derived from humans are at risk of re-identification when combined 
with information from other public sources, access must be requested 
from the MESOMICS data access committee, as detailed at https://
ega-archive.org/studies/EGAS00001004812. Minimum datasets of 
processed somatic alterations for genomic, transcriptomic and epig-
enomic data, sufficient to reproduce, interpret and extend our main 
results, are publicly available at https://github.com/IARCbioinfo/
MESOMICS_data/tree/main/phenotypic_map/MESOMICS. A data 
note manuscript detailing all of the quality controls of the dataset 
is available at https://www.biorxiv.org/content/10.1101/2022.07.0
6.499003v1 (ref. 82). TCGA whole-exome sequencing, RNA-seq and 
methylation array data are available from the Genomic Data Com-
mons portal (TCGA–MESO cohort4). Whole-exome sequencing and 
RNA-seq data from the Bueno and colleagues cohort3 are available 
from the EGA under accession number EGAS00001001563. Small 
variant lists, RNA-seq, expression array and methylation data for the 
Iorio and colleagues cohort18 are available from the Gene Expression 
Omnibus (accession number GSE29354), EGA (accession number 
EGAS00001000828) and Sequence Read Archive (accession number 
PRJNA523380). Corresponding drug responses are available from the 
cancerrxgene.org website (https://www.cancerrxgene.org/downloads/
drug_data?tissue=MESO; accessed July 2021). Expression array data for 
the de Reyniès and colleagues cohort5 are available from the ArrayEx-
press platform (E-MTAB-1719) and corresponding drug response data 
are available from the supplementary material of Blum et al.7. All of the 
other data supporting the findings of this study are available within the 
article and its Supplementary Information files. Further information 
and requests for resources should be directed to and will be fulfilled 
by M.F. (follm@iarc.who.int). Source data are provided with this paper.

Code availability
All bioinformatics pipelines are available at https://github.com/
IARCbioinfo (see Methods for details about which pipelines and ver-
sions were used for each analysis). A detailed R notebook allowing 
reproduction of the MOFA and Pareto tumor task inference results for 
the MESOMICS cohort is available at https://github.com/IARCbioinfo/
MESOMICS_data.
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Extended Data Fig. 1 | Overview of the MPM datasets for multiomic 
integration with MOFA. Overview of the omic data sets integrated into 
multiomics factor analyses (MOFAs), for (a) a MOFA of the MESOMICS cohort 
(n = 120), (b) MOFA of the TCGA cohort (n = 73), (c) MOFA of the Bueno cohort 
(n = 181), and (d) MOFA of the 3 cohorts (n = 120 + 73 + 181). D is the number 

of integrated omic features from genomic (rearrangements and mutations 
within DNA Alt; allele-specific copy number (CN) in Total CN and Minor CN), 
transcriptomic (RNA), and epigenomic data at promoter (MethPro), gene body 
(MethBod), and enhancer regions (MethEnh).
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Extended Data Fig. 2 | Proportion of interpatient variance explained by 
MOFA latent factors. a) Example feature for which a latent factor explains 0% of 
interpatient variance (here factor 2 explains no variance at all in the expression 
of gene NCR3—R2 = 0). b) Example feature for which a latent factor explains most 
of the variance (here factor 3 explains 87% of the variance of methylation site 
cg17731952—R2 = 0.87). c) Variance explained by the three histopathological 
types, each latent factor (LF) independently, predicted total variance explained 
by all latent factors together if they were completely independent (LF1 to LF4 

predicted), and actual variance explained by a model including the four latent 
factors as covariables (LF1 to LF4 observed). CIMP: CpG island methylator 
phenotype. d) Typical Total copy number (CN) feature associated with  
Factor 1. e) Typical Enhancer Methylation feature associated with Factor 2.  
f) Typical Enhancer Methylation feature associated with Factor 3. g) Typical Gene 
Body Methylation feature associated with Factor 4. In (a)-(b) and (d)-(g), the gray 
band corresponds to 95% confidence intervals.
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Extended Data Fig. 3 | Replication of MOFAs latent factors and tumor tasks in 
major MPM cohorts. MESOMICS MOFA latent factors and tumor task replicated 
in the TCGA (a) and Bueno (b) cohorts. The gray band corresponds to 95% 

confidence intervals. In (a), P values correspond to Pearson correlation tests 
(n = 73). MME: epithelioid; MMB: biphasic; MMS: sarcomatoid; NOS: malignant 
pleural mesothelioma not otherwise specified.
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Extended Data Fig. 4 | Replication of the prognostic value of MOFAs latent 
factors in other MPM cohorts. a)-(c) Association between histological types 
and proxies for the MOFA latent factors. a) Association between whole genome-
doubling (WGD) status and histological types in the MESOMICS and MSK-IMPACT 
cohorts, as determined by Fisher’s exact tests. b) Association between the 
Adaptive versus innate response score and histological types, in the MESOMICS 
(n = 120) and Bueno (n = 211) and TCGA (n = 73) cohorts, as determined by ANOVA 
tests. c) Association between the CIMP-index proxy computed on a five-gene 
panel and histological types in the MESOMICS and TCGA cohorts, as determined 
by ANOVA tests. d)-(g) Forest plots of hazard ratios for overall survival showing 
the replication of latent factors’ prognostic value, using a Cox proportional 
hazards model. In (b)-(c), boxplots represent the median and interquantile  
range and whiskers the maximum and minimum values, excluding outliers.  
d) WGD status (proxy for the ploidy factor) in the MESOMICS and MSK-IMPACT 

cohorts. e) Percentage of epithelioid estimated by pathologists from H&E slides 
(proxy for the morphology factor) in the MESOMICS and Bueno cohorts.  
f) Adaptive versus innate response score (proxy for the adaptive-response 
factor), in the MESOMICS and Bueno and TCGA cohorts, computed as the 
difference between the proportion of lymphocyte B and T-cells minus the 
proportion of macrophages, monocytes, and neutrophils, estimated from gene 
expression data (quanTIseq software). g) CIMP-index proxy computed on a 
five-gene panel (proxy for the CIMP-index factor), in the MESOMICS and TCGA 
cohorts. In all panels, P values indicate the significance of tests. In (d)-(g), squares 
correspond to estimated hazard ratios and segments to their 95% confidence 
intervals; tests in the MESOMICS cohort (discovery) are two-sided while tests in 
validation cohorts (MSK-IMPACT, TCGA, or Bueno cohorts) are one-sided, in the 
direction found in the discovery cohort.
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Extended Data Fig. 5 | Performance of MOFA factors to predict survival. a) 
Increase in area under the curve (AUC) as a function of percentage of change 
compared to histological classification. b) Density of survival time within the 
MESOMICS cohort. c) Integral AUC (iAUC) of twenty-two Cox proportional 
hazards survival models based on: (i) the three histopathological types (MME, 
MMB, and MMS); (ii) the proportion of sarcomatoid content; (iii) the log2 ratio 
of CLDN15/VIM (C/V) expression proposed by Bueno and colleagues; (iv), (v) and 
(vi) the E score, S score, and combining both scores from Blum and colleagues, 
respectively; (vii) an Artificial Intelligence (AI) prognostic score; (viii-xi) the 
one-dimensional summary of molecular data using LFs as a continuous variable; 

(xii-xvii), the two-dimensional summary of molecular data using either each 
combination of 2 LFs as continuous variables, respectively; (xviii-xxi), the 
three-dimensional summary of molecular data using each combination of 3 LFs 
as continuous variables; and (xxii), the four-dimensional summary of molecular 
data using all 4 LFs. Bars represent the mean values and error bars their standard 
error. Panels (a-c) present the out-of-sample accuracy within the MESOMICS 
cohort (4-fold cross-validation on n = 120 individuals), while (d-f) present the 
out-of-sample accuracy within the TCGA cohort (2000 bootstraps on n = 73 
individuals). The model fit accuracy (no split between training and test sets) on 
MESOMICS and TCGA cohort are presented in Supplementary Table 17.
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Extended Data Fig. 6 | MOFA LFs of MPM cell lines and drug response. a) 
Correlations between drug responses (measured by half maximal inhibitory 
concentration, IC50 in μM) and MOFA LFs of cell lines. Significant associations 
are annotated by black point border. b) Distribution of drug response weights 
from the Drugs data set, with drugs for which the response is significantly 
correlated with the given LF annotated in black. Targeted pathways are 

represented in (a) by a color bar (left), and in (b) by point colors. c) Correlations 
between representative drug responses significantly correlated with MOFA 
LFs from cell lines (left: negative correlations, right: positive associations). 
MPM: malignant pleural mesothelioma not otherwise specified. Gray bands 
correspond to 95% confidence intervals. Pearson correlation coefficients and the 
associated two-sided P values are displayed in (a) and (c).
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Extended Data Fig. 7 | Tumor burden of mutational signatures. Tumor 
Mutational Burden of a) 7 copy number signatures (n = 115 biologically 
independent samples) and b) 10 Single Nucleotide Variant Signatures detected 
in the MESOMICS cohort (n = 46 biologically independent samples). Note 
that although SBS40 is associated with age in many cancers, its etiology is still 
unknown. TDP: tandem duplicator phenotype; HRD: homologous recombination 
deficiency; fLOH: focal loss of heterozygosity; CIN: chromosomal instability.  

c) Comparison of the tumor mutation burden (TMB, in number of mutations) of 
APOBEC signatures SBS2 and 13 in the MESOMICS cohort and in more than 2000 
tumors from the Pan-Cancer Analysis of Whole Genomes (PCAWG) cohort.  
d) Comparison of the Relative TMB in number of somatic mutations of age-
related signatures SBS1, SBS5, and SBS40, with that of APOBEC signatures SBS2 
and 13 in the MESOMICS (red) and PCAWG cohorts (black).
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Extended Data Fig. 8 | Test of the impact of genomic events on cancer task specialization. a) Alignment of vectors with the Pareto front in degree (0°: perfectly 
aligned, 90°: completely orthogonal) and (b) length of the vector. P values correspond to two-sided Wilcoxon tests between observed and shuffled vector 
distributions.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01321-1

Extended Data Fig. 9 | Multiomics intra-tumor heterogeneity (ITH) of 13 
multiregion samples. a) Intratumoral heterogeneity (ITH) score, ranging 
from 0% (no ITH) to 100% (ITH greater than the maximum observed intertumor 
heterogeneity in the cohort), for each sample (row) and each MOFA latent factor 
(column). The score is computed as the percentage of inter-tumor distances in 
a MOFA factor that are lower than the observed intratumor distance between 
regions. The four samples with ITH score greater than 50% are highlighted in 
color. b) Relationship between histopathological heterogeneity and cancer 
task specialization. Ternary plots depicting task specialization in three cancer 
tasks (see Fig. 2). For each histopathological feature, a colored arrow connects 
regions from tumors with differences in this feature. Numbers correspond to the 
percentage of this feature in the tumor as estimated by our pathologist. The right 

ternary plot represents all samples with no histopathological ITH. c) Epithelial 
to mesenchymal transition (EMT) score and innate immune composition score 
as a function of MOFA’s Morphology factor. Small points correspond to all 
samples from the MESOMICS cohort, and large points connected by segments 
to regions from the 3 patients with CIMP factor ITH highlighted in (a). Blue bands 
correspond to 95% confidence intervals, and P values to two-sided t-tests.  
d) Lollipop plot of the estimated proportion of immune cells in two regions of a 
sample with ITH in the adaptive-response factor highlighted in (a). e) CIMP index 
in regions of two tumors with substantial ITH in the CIMP factor highlighted in (a) 
(colored points connected by an arc), compared to that of the rest of the cohort 
(grey points).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Association between MOFA latent factors and the 
clusters identified by consensus clustering (a-d) and integrative clustering 
(e-h). a) Kruskal-Wallis rank sum test significance (P value) between each K 
(row) and the LFs (column), for K from 2 to 5 from consensus clustering results 
and the first four LFs. b) Kruskal-Wallis rank sum test significance (P value) 
between each K (row) and the LFs (column), for K from 2 to 5 from integrative 
clustering results and the first four LFs. c) Consensus clustering results for K = 3. 
Samples are visualized in MOFA latent factor space of LF2 vs. LF3 and colored 
by the consensus clustering results. d) Integrative clustering results for K = 4. 
Samples are visualized in MOFA latent factor space of LF2 vs. LF3 and colored 
by the integrative clustering results. On the right, we show the samples in one-
dimensional space of LF1 using beeswarm plot. e) Consensus clustering results 
for K = 4. f) Integrative clustering results for K = 5. Samples are visualized in MOFA 

latent factor space of LF2 vs. LF3 and colored by the integrative clustering results. 
On the right, we show the samples in one-dimensional space of LF1 and LF4 using 
beeswarm plot. g) Top-left: average silhouette width for consensus clustering 
with different K. Bottom-left: proportion of samples below the selected 
silhouette width threshold for consensus clustering with different K. Right: 
consensus matrix heatmap for K = 3. Color gradient represents consensus values 
from 0–1. h) Top-left: average silhouette width for integrative clustering with 
different K. Bottom-left: proportion of samples below the selected silhouette 
width threshold for integrative clustering with different K. Right: heatmap of the 
frequencies of samples being clustered together among all clustering results 
using the set of iClusterPlus lambda values for K = 4. Color gradient represents 
consensus values from 0–1.
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