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1 Supplementary methods

1.1 Clinical data description

Detailed information from Santé Publique France (SPF), the French National Public Health Agency, about probability of
exposure (no evidence found-0, possible-1/3, likely-2/3, and very likely-1), frequency (sporadic-0.25, intermittent-0.5,
frequent-0.75, and persistent-1), intensity (low-1, intermediate-2, high-3, and very high-4), and duration of the asbestos
exposure (in years) was available for 47 patients as the result of a supervised survey, the national program for pleural
mesothelioma surveillance (Programme national de surveillance du mésothéliome pleural, PNSM)83. In order to compare
exposure levels between patients and to reduce the number of variables, we computed a lifetime exposure score in units
of years of persistent low-intensity asbestos exposure, by multiplying the probability, frequency, intensity, and duration of
the exposure. This score is analogous to the pack-years concept used for tobacco smoking that also balances intense, short-
duration with weaker, long-duration exposures84. Indeed, ten years of very likely, sporadic, very high intensity asbestos
exposure leads to the same score (10 × 1 × 0.25 × 4 = 10) as ten years of very likely, persistent, low-intensity exposure
(10 × 1 × 1 × 1 = 10) (Table S2-3). In order to improve the power of some of the statistical analyses, we constructed a
categorical age variable where age was discretized into 3 classes (class1: (29, 63], class2: (63, 71], and class3: (71, 90], in
years).

We tested the associations between clinical variables; in particular, between a batch variable (sample provider) and the
main variable of interest (histopathological type or major epithelioid subtype) or important biological covariables such as
sex, age, smoking status, and asbestos exposure, using Fisher’s exact tests. We found that the sample provider was not
significantly associated with the clinical variables (from Table S2), while sex was significantly associated with smoking
status and asbestos exposure (Fisher’s exact test q-value = 0.0002 and q-value = 0.03, respectively).

1.2 The MESOMICS cohort description

Age at diagnosis, sex, smoking status, asbestos exposure, treatment information (surgery, chemotherapy, radiotherapy,
immunotherapy, and cancer history), and survival data (calculated in months from surgery to last day of follow up or
death) were collected for all patients. Tumor stage was not available as this information was not collected in the French
MESOBANK records. Note that this distribution of MPM types and epithelioid subtypes does not represent the true clinical
distribution because of the bias we have introduced by including only samples with sufficient tumor content and good
quality DNA and RNA. The tumor content estimated by our pathologist (F.G.-S.) in the series ranged from 10 to 100%.
Similarly, the presence of infiltration was also evaluated in the H&E (hematoxylin and eosin) slides, and it ranged from 0% to
45% (Table S2). In addition, using the H&E slides, whole-image artificial intelligence analyses were undertaken to identify
the most clinically relevant morphological features, and a score was calculated using the MesoNet algorithm (see details in
section Artificial Intelligence model details)15. As expected, the median overall survival (OS) for the whole series was 14
months (IQR 12-17.1), with epithelioid (MME) showing the longest OS (15.8 months, IQR 13.9-24.5) followed by biphasic
(MMB; 10.8 months, IQR 6.3-17.2) and sarcomatoid (MMS; 4.5 months, IQR 2.2-NA). The tubulopapillary subtype showed
the best OS (ranging from 20.9 to 41.9 months), followed by trabecular (16.85-18.4), acinar (13.1-15.9) and solid (11.9-14.4),
which showed the worst OS. In addition, the proportion of solid subtype was negatively associated with survival (q-values
< 0.01) (Table S13). The ratio of men to women is 2.76, with no statistical association between sex and histological type or
subtype. Of note, surgery but not radiotherapy were associated with a better prognosis (hazard ratios of 1.15 and -0.10, and
p = 0.033 and 0.800, respectively; Table S14).

As shown in Table S1, the main difference between MESOMICS and the two previously published series of mesothelioma
by Bueno3 and the TCGA4 was the percentage of MMS (12.5% in MESOMICS vs. 4% in both TCGA and Bueno). As expected,
the median overall survival (OS) for the whole series was 14 months (very close to the TCGA and Bueno’s series), with MME
showing the longest OS (15.8 months) followed by MMB (10.8 months) and MMS (4.5 months). While the trend was similar
to the TCGA and Bueno’s series, the TCGA cohort showed longer survival for MME (24.1 months). Median age at diagnosis
was 67.5 years (64 and 65.3 for TCGA and Bueno’s series, respectively) and 73.3% of patients were male (84% and 82% in
TCGA and Bueno’s series, respectively). The ratio of men to women was 2.76, with no statistical association between sex
and histological type or subtype.

1.3 Pathological review details

Tumor grade, immune infiltration, presence of necrosis and vessels were assessed for all 136 samples. In addition of
histopathological types, we also assessed the epithelioid histopathological characteristics (architectural subtypes, cytologi-
cal variants and stromal characteristics), which we subdivided into three subtypes, based on the recent IASCL-EURACAN
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interdisciplinary meeting recommendations8: favorable prognosis (regrouping the acinar and papillary subtypes, and sam-
ples with abundant myxoid stroma), intermediate-prognosis (trabecular subtype), and unfavorable prognosis (solid sub-
type). Finally, we also assessed the sarcomatoid histopathological characteristics (simple, desmoplastic, low and high
grade fusocelular, and with pleomorphic, heterologous, or transitional component) and both epithelioid and sarcomatoid
histopathological characteristics in case of biphasic samples.

1.4 Artificial Intelligence analysis details

The model has been trained on a randomly selected training dataset of 2903 slides from the MESOPATH-NETMESO INCa
network/MESOBANK (excluding samples from our MESOMICS cohort) and applied to the slides of our MESOMICS co-
hort. This model is trained to predict overall survival using only one H&E stained whole slide image per patient as input.
It is therefore completely agnostic of any genomic information. The MesoNet model is composed of five elements. i) Matter
extraction, which splits foreground and background images. ii) Tiling, which splits scanned images into tiles of 224 by 224
pixels. iii) Feature extraction, which uses the ResNet50 network, pre-trained in general image recognition tasks to obtain
2,048 features per tile. iv) Top and negative instances, which uses a 1-dimensional convolution layer to compute a score per
tile, and picks the 10 highest and 10 lowest scores. v) Classification, using a multi-layer perceptron with two fully connected
layers of 200 and 100 neurons and outputs a prediction score.

1.5 Immunohistochemistry

FFPE tissue sections (3µm thick) from 136 MPM samples were deparaffinized and stained with the Santa Cruz BAP1 an-
tibody (cloneC-4, catalog number sc-28383) (dilution one to 50). Nuclear staining was considered positive (when nuclear
expression was retained) or negative (complete loss of staining of all tumor cells with a positive internal control on the
slides: fibroblast, lymphocytes and other non-tumor cells). Consequently, the positivity of BAP1 was reported as a score
ranging from 0 complete loss of nuclear staining and 1 nuclear staining retained in 100% nuclei. Results are presented in
Table S2.

1.6 Survival analysis quality control and replication

The proportional hazards hypothesis was checked using the Schoenfeld residuals (zph function). Univariate Cox analyses
were performed for each important biological data such as sex, age, smoking status, and asbestos exposure as explanatory
variable to evaluate their individual association with survival. In order to respect the minimal proportion of samples per
group at 10%, we gathered current and former smoker groups together. Among the clinical data tested, only age and sex
were both significantly associated with survival (Cox model p-value = 0.00021 and p-value = 0.045 respectively) (Table S12).
As a result of univariate analyses, in order to assess survival associations with continuous molecular variables, we fitted
Cox models by including sex and used the attained age scale, which provides a control for age effects without needing to fit
an additional age parameter compatible with the proportional hazards assumption85 (Tables S13-20).

For the replication of survival analyses (Extended data fig. 4), we used the MSK-IMPACT38, Bueno3, and TCGA4 co-
horts depending on the data available. For the ploidy factor, we used the Whole-Genome Doubling (WGD) status from
the mesothelioma samples of the MSK-IMPACT cohort, using tumor location as an additional covariable (3 of the sam-
ples were from the peritoneum). As initially reported by the authors across more than 30 tumor types, we find that WGD
is associated with poorer survival in the MSK-IMPACT MPM cohort. For the Morphology factor, we used the percent-
age epithelioid component as reported in the Bueno cohort by pathologists from microscopic examination of H&E slides,
which is as expected associated with a better prognosis. For the Adaptive-response factor, we used an Adaptive vs. In-
nate immune response score, defined as the difference between the proportions of adaptive cells (B and T cells) minus
the proportion of innate response cells (macrophages, monocytes, neutrophils), that we could obtain from the estimated
immune cell proportions computed from the gene expression data in all RNA-seq cohorts using software quanTIseq (ME-
SOMICS, Bueno, and TCGA). This is based on the fact that we found B and T cells are associated with good progno-
sis while macrophages are associated with bad prognosis, and this has been recently proven also true in mesothelioma
(https://doi.org/10.3389/fonc.2022.870352). We found that this score was associated with a better prognosis. Finally,
for the CIMP-index factor, we used a simpler CIMP-index proxy computed from only five genes, and replicated our results
in the only cohort containing methylation data, the TCGA cohort. Following the original publication38 , we fitted Cox mod-
els with age as a covariable. We used one-sided Wald tests with a cutoff p-value of 5% to assess the replication of the effects
and their direction.
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1.7 DNA Sequencing

1.7.1 Whole-Genome DNA Sequencing (WGS) details

After a complete quality control, genomic DNA (1µg) was used to prepare a library for whole genome sequencing, using the
Illumina TruSeq DNA PCR-Free Library Preparation Kit (Illumina Inc., CA, USA, catalog number 20015963), according to
the manufacturer’s instructions. After quality control and normalization, qualified libraries were sequenced on a HiSeqX5
platform from Illumina (Illumina Inc., CA, USA), as paired-end 150 bp reads. Two lanes of HiSeqX5 flow cells were pro-
duced for each sample paired with matched-normal tissue or blood, in order to reach an average sequencing depth of 60x
and one lane for the others in order to reach an average sequencing depth of 30x for the others. Sequence quality parameters
were assessed throughout the sequencing run and standard bioinformatics analysis of sequencing data was based on the
Illumina pipeline to generate FASTQ files for each sample.

1.7.2 Variant calling and filtering on DNA details

Our Nextflow workflow is based on the GATK best practices (https://github.com/IARCbioinfo/mutect-nf release v2.2b).
We used a set of 79 blood samples (16 from the MESOMICS cohort and 73 from Gabriel etal.86) coming from the same se-
quencing machine from CNRGH in Paris as the panel of normal, and used GATK4’s filtering module (FilterMutectCalls)
with the recommended known variants VCF (gnomAD variants from GATK’s Mutect2 bundle) and per sample estimates of
the contamination rate obtained with GATK4’s CalculateContamination (using the small panel of EXAC single-nucleotide
polymorphisms (SNPs) from GATK4’s Mutect2 bundle). Normalization of resulting variant calling format (VCF) files
was performed with BCFtools version 1.10-2 as implemented in our workflow (https://github.com/IARCbioinfo/vcf_
normalization-nf v1.1).

To call somatic variants on tumor-only samples (72/115) a similar procedure was performed (Mutect2 tumor-only mode)
but included further germline filtering steps using a random forest (RF) classifier. A total of 20 features (gnomad, COSMIC,
genomic location/impact, and features obtained directly from Mutect2) were selected to build a RF model to classify single
nucleotide variants and small Indels as somatic or germline. For training the RF model a total of 46 tumors with matched
normal mesothelioma whole-genome sequences were used. Variants on this subset were called using both the tumor-only
and matched modes of Mutect2. The matched somatic calls (ground-truth) were used to split the variants of the tumor-
only calls into germline and somatic classes and subsampled to mitigate bias arising from class imbalance during training
(1:1 somatic:germline ratio, n =407,984). The dataset was divided into 75% for training (n =305,988) and 25% for testing
(n =101,996), and the trained model reached an accuracy of 0.93 in the test set. A random forest model for single-nucleotide
variants (SNVs) (rfvs01) was trained using a total of 326,388 (80%) variants (1:1 ratio). For indels, a random forest model
(rfvi01) was built using a total of 337,442 variants (1:1 ratio, including 305,988 SVNs and 31,454 indels). To control the false
positives (RF Model FDR=6.4%), given the highest expected proportion of germline variants in the prediction set, we set
a cutoff (RF votes) of 0.5 and 0.75 for coding and non-coding variants, respectively. Finally, the RF models (rfvs01 and
rfvi01) were used to classify a total of 1,454,942 variants (SNVs=1,317,200 and indels=137,742) of which 217,436 variants
(including SNVs and indels) were classified as somatic. Importantly, the recurrent somatic SNVs are not enriched in tumor-
only samples (Fisher’s exact tests, Fig. S24). The point mutation calls for the MESOMICS cohort (n =448,434) include the
matched calls (43 WGS) and the filtered tumor-only calls (72 WGS) (Table S44). The source code and the random forest
models are available in the Github repository at https://github.com/IARCbioinfo/RF-mut-f.

We retrieved germline variants in a list of 26 genes involved in homologous recombination (BRCA1, BRCA2, TP53BP1,
ATM, ATR, ATRIP, BARD1, BLM, BRIP1, DMC1, MRE11A, NBN, PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RIF1,
RMI1, RMI2, RPA1, TOP3A, TOPBP1, XRCC2, and XRCC3; from Toh and Ngeow The Oncologist 202128) and classified as
“Pathogenic” or “Likely pathogenic” in the ANNOVAR clinvar annotation (version 03.16.2020). We found such variants in
6 samples (1 germline mutation in BRCA1, 3 in BRCA2, 1 in ATM, and 1 in NBN); they were all at very low frequencies or
absent from the 1000 genomes and exAc databases (frequency<0.0001). In addition, we note that the BRCA1 and BRCA2
germline-mutated tumors indeed were classified as such by CHORD, further validating our results. See results in Table
S46.

1.7.3 Microsatellite instability detection

Microsatellite Instability (MSI) phenotypes were detected from cram files using msisensor-pro version 1.2.0 87. We scanned
the reference genome GRCh38 for microsatellite information, and constructed a baseline for tumor-only samples using
all normal samples from the MESOMICS cohort as a panel of normals. We then separately evaluated MSI in tumor-only
samples using the “pro” module, and in tumor-normal pairs using the “msi” module. Tumor-only samples showed a slight
offset of 2% in the percentage of microsatellites altered reported by the program but were otherwise comparable to tumor-
normal pairs. A single sample had a high proportion of microsatellites altered (>8% in MESO_084) and was considered
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microsatellite unstable. Results are reported in Table S49.

1.7.4 Copy number variant calling details

We benchmarked the PURPLE tumor-only mode by comparing the estimation of tumor purity, tumor ploidy, number of seg-
ments, percentage of genome changed (amplified, deleted), percentage of genome in neutral LOH (Loss Of Heterozygosity),
and major/minor copy number alleles at gene level for matched and tumor-only PURPLE calls. CNV calls are reported in
Table S34 and presented in Fig. 3b, and compared to that from the Bueno3 and TCGA4 cohorts in Fig. S6. TCGA copy
number data was downloaded from the TCGA portal (TCGA-MESO, https://portal.gdc.cancer.gov/, March 2021) cor-
responding to the allele-specific copy number segment data from genotyping arrays.

We observed a high concordance (pearson correlation) between tumor-only and matched PURPLE calls for tumor purity
(r > 0.98), tumor ploidy (r = 1), number of cnv segments per tumor (r > 0.98), percentage of genome changed (am-
plified, deleted, r > 0.99), and percentage of genome in neutral LOH (r > 0.99). Moreover, the concordance between
tumor-only and matched PURPLE calls was also high at gene level with major and minor copy number alleles reaching
R > 0.96. However, we observed artifactual focal amplifications and deletions near telomeric and centromeric regions
and short segments (<13999 bp) that were not called when using the matched data. These regions were identified and the
segments overlapping these regions were removed from the tumor-only calls. In addition, slightly negative copy number
estimates (in ]-0.5,0[) were rounded to 0, and copy number estimates below -0.5 were excluded because they likely cor-
respond to noisy read depth regions. The copy number calls for the MESOMICS cohort (115 WGS) include the matched
PURPLE calls (43 WGS) and the filtered tumor-only PURPLE calls (72 WGS). Importantly, the recurrent somatic CNVs are
not enriched in tumor-only samples except for one single gene and all q-values>0.05 after Benjamini-Hochberg adjustment
(Fisher’s exact tests, Fig. S24C-D, Table S33-34). Whole genome doubling samples were called in genomes with more
than 10 autosomes with major allele copy number > 1.5. Near haploid samples were identified as those with LOH genome
percentage larger than 80%. Finally, recurrent genomic regions of DNA copy-number alterations in the 115 WGS were iden-
tified with GISTIC2.088 (version 2.20.23, -conf 99%) using as input the PURPLE CNV calls (log2(totalcopynumber)-1) (Table
S34). Cohort-level profiles (Fig. 3b) were computed and plotted using ACNViewer 89 version 2.2 (see singularity image at
https://github.com/IARCbioinfo/acnviewer-singularity ).

For replication of the analyses using the whole-exome sequencing data from the TCGA4 and Bueno3 cohorts (Fig. S6), as
PURPLE is only suited for WGS data, we used software Facets90 instead, as implemented in our pipeline (https://github.
com/IARCbioinfo/facets-nf v. 2.0).

1.7.5 Structural variant calling details

For matched WGS, DELLY was run in somatic SV discovery mode using the hg38 blacklisted DELLY regions (“-x hu-
man.hg38.excl.tsv"; the list excludes centromere, telomere, and heterochromatin regions, as well as alt, decoy, and un-
known contigs of hg38) and the tumor/normal WGS pairs. A list of somatic SVs passing all filters was generated using
the DELLY somatic filter, which considers somatic SVs as those with at least 10 fold coverage in the tumor sample and
without evidence of normal read support for the alternative allele (ALT support in normal equal 0). Manta was run in
somatic SV discovery mode using the tumor/normal WGS (–normalBAM and –tumorBAM options) and excluding the
non-chromosome contig sequences (alt and decoy) of hg38 (–callRegions option). The somatic SVs passing all Manta filters
(minPassSomaticScore >=30) were considered for the consensus step. SvABA was run using our in-house Nextflow work-
flow (https://github.com/IARCbioinfo/svaba-nf, revision number 1.0) to identify somatic and germline SVs using the
tumor/normal WGS. The somatic SVs passing all SvABA filters were considered for the consensus step. The overlap of
filtered somatic SV calls was performed using SURVIVOR (merge subcommand) considering as matching SV breakpoints
those at a maximum distance of 1kb (ignoring SV type and SV strand).

To filter germline SVs in tumor-only samples we trained a random forest model for each SV caller. The SV random
forest model includes a total of 19 features, which are associated with external SV databases, custom panel-of-normal SVs,
genomic regions, and SV features derived from SV callers. The training of the random forest model for each SV caller was
performed using the matched WGS (57 including multi-region samples). First, the somatic calls from the matched WGS
were used as the ground-truth during training and evaluation of each SV random forest model. Second, tumor-only calls
were generated for the matched data using the tumor WGS for Manta and DELLY. For SvABA, the somatic and germline
SVs called by the somatic mode were merged to generate the tumor-only calls from the matched data. Third, the panel of
normals for each matched WGS and SV caller combinations were generated by integrating 45 germline SV calls (excluding
the respective normal sample) with SURVIVOR (merge command). Fourth, a total of 12,454, 16,720, and 12,264 SVs at 1:1
somatic:germline proportions were used to train (75%) and evaluate (25%) the random forest models of DELLY, Manta,
and SvABA, respectively. The accuracy achieved on the benchmark set was 0.9, 0.89 and 0.88 for DELLY, SvABA, and
Manta SV RF models, respectively. Finally, the SV random forest models were used to filter the germline SVs from tumor-
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only samples using a cutoff (RF votes) of 0.5 and 0.75 for coding and non-coding SVs, respectively. SVs matching one
present in the custom PON or located in centromeric regions were discarded. SV call set for each tumor-only sample was
created using the same steps performed for the matched WGS (merging DELLY, SVaba and Manta calls with SURVIVOR
and keeping single caller predictions with read support ≥ 15). Moreover, SVs found in more than 4 samples in the tumor-
only series were also classified as potentially germline and removed from the final consensus set. The SVs calls for the
MESOMICS cohort (Table S41, n =12,914) include the matched SV calls (43 WGS, n = 4, 685) and the filtered tumor-only
SV calls (72 WGS, n =8,229). Importantly, the recurrent somatic SVs are not enriched in tumor-only samples (Fisher’s exact
tests, Fig. S24B, Table S41). The source code and the SV random forest models are available in the Github repository at
https://github.com/IARCbioinfo/ssvht.

1.7.6 Damaging variants and driver detection

Mutational cancer driver genes have been detected using the state-of-the-art integrative oncogenomics pipeline (IntOGen30),
that distinguishes signals of positive selection from neutral mutagenesis across a cohort of tumors by combining multiple
driver detection methods. The IntOGen pipeline was run for each cohort separately, and also for the combined cohort to
gain in statistical power, and to detect mutational driver genes that may be specific to each of them (Fig. S14C and Fig. 4,
left panel). Of note, variants occurring on mitochondria chromosome chrM have not been considered in this analysis. Genes
that drive tumorigenesis upon SVs have simply been selected based on their recurrence, using a cutoff of five samples (Fig.
S14A).

The damaging SNVs, indels and structural variants have been selected as follows. First, for SNVs and small indels, we
used ANNOVAR annotations to restrict the list to the exonic or splicing, non-synonymous variants. For multi-nucleotide
polymorphisms (MNP), we used the Coding Change ANNOVAR procedure to infer the protein changes occurring and in
case of any amino acid changes, we classified the event as damaging. Finally, we removed structural variants for which the
breakpoints lead to harmless changes for the coding sequence of the gene such as large in frame deletion in a single intron.
The oncoplot (Fig. 4) was plotted using R package maftools91 version 2.10.05.

1.7.7 Comparison with PCAWG and TCGA

Tumor Mutational Burden comparison of Mesothelioma and TCGA cohorts (Fig. S13A) was performed with the maftools91

package (v2.6.05). The PCAWG data for mRNA fusions (version 1.0), SVs (version consensus_1.6.161116), CNVs (consen-
sus.20170119), and number of SNVs represented in Fig. S13B were downloaded from the PCAWG site (https://dcc.icgc.
org/releases/PCAWG, accessed in June 2022), using the white- and gray-listed samples from the sample sheet v1.4 (2016-09-
14). The copy number burden (CNB) was computed as the number of segments, thus reflecting the degree of fragmentation
of the genome.

1.7.8 Identification of complex mutational process in MPM tumors

Mutational SBS signatures were de novo discovered and decomposed into COSMIC mutational signatures with the SigPro-
filerExtractor 24 tool, version 1.0.17. The SNVs called by both Mutect2 and Strelka (nextflow workflow https://github.

com/IARCbioinfo/strelka2-nf v1.2a) on the T/N samples were used as input for SigProfilerExtractor to avoid caller spe-
cific signatures; note that we also chose to include the three non-chemonaive samples in order to check the presence of
platinum-agent-associated mutational signatures. Five de novo signatures were identified and decomposed with high
fidelity (cosine similarities greater than 0.93) into 10 known COSMIC signatures (see Table S45). Note we identified a
small number of tumors (6) with the APOBEC signature SBS2, which tend to have a low-burden of age-related signatures
(Extended data fig. 7D) and half of which also have the other APOBEC signature SBS13, as reported in some PCAWG
cohorts11 such as B-cell non-Hodgkin leukemia24 (Extended data fig. 7C). Copy Number signatures were called using Sig-
ProfilerExtractor version 1.1.3 as described in Steele etal.25 and using as input the PURPLE copy number segments with
allele-specific copy numbers rounded to the nearest integer, removing samples with ambiguous integer copy numbers (i.e.,
those with integer total CN different from the sum of minor and major integer CN, due to the presence of multiple subclones
with different CN states). We identified 4 de novo signatures that were decomposed with high fidelity (cosine similarities
greater than 0.9) into 7 COSMIC signatures (v3.1, see signatures in Table S35), and processes associated with each signature
were retrieved from Steele etal.25. SV signatures were also called using the SigProfiler framework (version 1.1). Finally,
detection and classification of clustered mutations (kataegis analysis) was performed as described in Bergstrom etal.26. The
list of clustered mutations per tumor including their classes are provided in Table S42, and represented in Fig. S10.

Chromothripsis regions were identified by combining SVs and CNV calls with the svpluscnv92 R package version 0.9.1.
To identify shattered regions’ breakpoints from CNVs and SVs, breakpoints were counted by splitting the genome into
10Mb windows. Contiguous windows with a high density of breakpoints were merged into larger shattered regions. Then
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interleaved SVs and variations in copy number state signatures were used to differentiate chromothripsis from focal events
such as double minutes. Additionally, following recent practices10, we classified the shattered region into high and low
confidence by considering the number of oscillating CN segments: high-confidence calls were classified as those displaying
an oscillation pattern between two copy number states in at least seven adjacent CN segments, others were classified as
low-confidence calls (Table S39, Fig. S9).

Amplicon predictions were performed using the AmpliconArchitect program93 version 1.2. In brief, the copy number
variants were called using the CNVkit program (version 0.9.7), which is the recommended CNV caller to identify seed for
AmpliconArchitect. Seed selection was performed following the recommended criteria (minimum segment length of 50Kb
and minimum copy number gain of 4.5) using the amplified_intervals.py (amplified_intervals.py –gain 4.5 –cnsize_min
50000 –ref GRCh38) script provided by the AmpliconArchitect package. AmpliconArchitect was then run with default pa-
rameters using the selected seeds and the tumor CRAM files as input. In particular, AmpliconArchitect uses the UCSC
cytoBands for the position for centromeres; although some of the segments reported overlap with some centromeric re-
gions in chr13, we prefered to report these segments, because these are the default centromeric positions so likely used
by a majority of AmpliconArchitect users, and because AmpliconArchitect accounts for repetitive and low-complexity re-
gions and these amplicons were each supported by multiple split-reads in these samples (>25 breakpoints per ecDNA
amplicon), which we believe is unlikely to be an artifact. Finally, the AmpliconClassifier program was run to classify the
amplicons generated by AmpliconArchitect into ecDNA, BFS, Complex, linear or non-amplified classes (Table S38, Fig.
S7). MESO_019 was the only tumor where a circular amplicon encompassing known oncogenes was found, so we plotted
its the only non-trivial cycle found by AmpliconArchitect, using CycleViz v0.1.2 tool from the AmpliconArchitect authors
(https://github.com/jluebeck/CycleViz; Fig. 3c´, middle panel). Finally, the homologous recombination deficiency
samples were identified using the R package CHORD94 version 2.0 (Table S40). Following CHORD recommendation, four
HRD positive samples were marked with a not determined HRD type because they have less than 30 SV.

1.7.9 TERT promoter mutation analyses

Point mutations within the TERT promoter region (chr5: 1,294,956-1,295,406, hg38) were identified from the VCF file outputs
of WGS prior to filtering T-only variants using the random forest filter (see Variant calling and filtering on DNA). Pre-
filtered VCF files were used due to low mappability of the region that results in high false negative point mutation detection
rates. Genomic coordinates were selected specifically as all previously reported TERT promoter mutations in mesothelioma
(C158A, A161C, C228T, C250T) are contained within the above region95,96. Three of four reported mutations were identified
in seven samples: A161C (chr5: 1,295,046 in hg38 coordinates), C228T (chr5: 1,295,113), and C250T (chr5: 1,295,135). Results
are presented in Fig. S16.

1.8 RNA Sequencing

1.8.1 RNA Sequencing (RNA-seq) details

We collected two technical replicates, MESO_051_TR and MESO_115_TR, from two different patients and coming from the
same RNA extraction as MESO_051_T and MESO_115_T respectively but sequenced separately. Libraries were prepared
using the Illumina TruSeq mRNA stranded sample preparation Kit (Illumina Inc., CA, USA, catalog number 20020595). Li-
brary preparation started with 1µg total RNA. After poly-A selection (using poly-T oligo-attached magnetic beads), mRNA
was purified and fragmented using divalent cations under elevated temperature. The RNA fragments underwent reverse
transcription using random primers. This is followed by second strand complementary DNA (cDNA) synthesis with DNA
Polymerase I and RNase H. After end repair and A-tailing, indexing adapters were ligated. The products were then purified
and amplified (14 PCR cycles) to create the final cDNA libraries. After library validation and quantification (Agilent 4200
Tapestation), equimolar amounts of the library were pooled. The pool was quantified by using the Peqlab KAPA Library
Quantification Kit and the Applied Biosystems 7900HT Sequence Detection System. The pool was sequenced by using an
Illumina Novaseq 6000 sequencing device and a paired end 100nt protocol.

1.8.2 Data processing details

Reads were trimmed for the adapter sequence using Trim Galore (version 0.6.5 for expression quantification, and version
0.4.2 for alternative splicing analyses), then mapped to reference genome GRCh38 (using annotation gencode version 33)
with STAR software (version 2.7.3a). Then, reads were realigned locally using ABRA280 (workflow https://github.com/

IARCbioinfo/abra-nf release v3.0), and base quality scores were recalibrated using GATK (workflow https://github.

com/IARCbioinfo/BQSR-nf release v1.1). Expression was quantified for each sample, generating a raw read count table
with gene-level quantification for each gene of the comprehensive gencode gene annotation file (release 33), as well as a table
with Gene fragments per kilobase million (FPKM), using StringTie software (version 2.1.2) (Nextflow pipeline accessible at
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https://github.com/IARCbioinfo/RNAseq-transcript-nf release v2.2). Quality control of the samples was performed at
each step. FastQC software (version 0.11.9; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used
to check raw reads quality and RSeQC software (version 3.0.1) was used to check alignment quality.

1.8.3 Quality controls

We performed dimensional reduction on expression data as quality control, using Principal Component Analysis (PCA)
(function dudi.pca from R package ade4 version 1.7-16). PCA was performed on the variance-stabilized read counts of the
5,000 most variable genes for (i) (MESOMICS) 109, (ii) (Bueno3) 180, (TCGA4) 73, and (iii) (3-cohorts: MESOMICS, Bueno,
and TCGA) 362 samples (Table S27). For each set, samples were plotted by their coordinates to visualize outliers. For each
dataset, linear regression analysis was performed to determine any significant association between these PCs and technical
variables such as RNA-seq batch, macrodissection and provider. We found no outliers, and no batch effect in this data.

1.8.4 Variant calling and filtering on RNA

We used Mutect2 with the –allele flag to force genotyping of variants identified by mutect in the whole-genome sequenc-
ing data to call variants on the 126 RNA sequencing data for validation (workflow https://github.com/IARCbioinfo/

mutect2-nf release v2.2b with option –genotype).

1.8.5 Fusion transcript analysis

Fusion transcripts were detected using Arriba97 for the MESOMICS, Bueno3, and TCGA4 cohorts. First, RNA-seq reads were
aligned using STAR (2.7.6a) to the hg38 reference. Second, Arriba was used to call mRNA-fusions using the STAR alignment
(BAM) and Arriba blacklisted regions (-b option). For the MESOMICS cohort, we additionally integrated the genomic SVs
by including the SV breakpoints into the calling (-d option). Finally, high-quality mRNA-fusion predictions for all MPM
cohorts were defined as those Arriba predictions classified as high confidence and with a minimum support of ten reads
from paired-end and split-read alignments. The Table S43 contains all the mRNA fusions passing the aforementioned filters,
and Fig. S15 represents recurrently altered genes.

1.8.6 Alternative splicing analysis

The raw read files from the 109 samples of the MESOMICS cohorts were trimmed using Trim Galore version 0.4.2 and
pseudo aligned with Salmon version 1.8.0, using GRCh38 reference genome (using annotation gencode version 33) to build
an index. Percent Spliced In (PSI) of the alternative splicing events of all genes were calculated from the Transcripts Per
Million (TPMs) using SUPPA298. Transcript usage was also calculated using SUPPA2. Principal Component Analysis (PCA)
was used to cluster the samples based on their alternative splicing pattern profile, using PSIs from the top 6,366 splicing
events, which explained 50% of the variance (Fig. S20). Spearman correlation tests were performed among the principal
components and the MOFA Factors and Archetypes. Gene Ontology Cellular Component analysis was used to identify
alternative splicing events contributing to PCs.

1.8.7 Processing of publicly available expression array data

Raw expression array CEL files from Iorio and colleagues18 and de Reynies and colleagues5 were downloaded from public
repositories (GEO: GSE29354 and ArrayExpress: E-MTAB-1719, respectively) and processed using the RMA algorithm (jus-
tRMA function from the affy R package version 1.68.0). Annotations were downloaded from the hgu219.db and hgu133plus2.db
packages (version 3.2.3).

1.8.8 Immune contexture deconvolution from expression data

The proportion of cells that belong to each of ten immune cell types (B cells, macrophages M1, macrophages M2, monocytes,
neutrophils, NK cells, CD4+ T cells, CD8+ T cells, CD4+ regulatory T cells, and dendritic cells) were estimated from the
RNA-seq data using software quanTIseq (downloaded 14 September 2020) using our workflow for parallel processing of
samples (https://github.com/IARCbioinfo/quantiseq-nf release v1.1).

As technical validation of quantiseq results, we used EpiDISH R package (version 2.6.0) to estimate seven immune cell
types (B cells, monocytes, neutrophils, NK cells, CD4+ T cells, CD8+ T cells, and eosinophils) as well as epithelial cells
and fibroblasts from the DNA methylation data. The immune cell types for which the association with archetypes were
the strongest (absolute Pearson’s correlation coefficient r > 0.4, B cells, CD8+ T, and neutrophils) presented significant
concordance between softwares (additionally to monocytes). The other estimates (NK cells and CD4+ T) have not been
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confirmed in EpiDISH estimation, possibly because of the reference differences —such as the reference size, the number
of cell types estimated— between softwares. Proportion of cells in the TCGA and Bueno samples were taken from the
supplementary tables of Alcala etal.6, which used the exact same software and version.

1.8.9 Association between gene expression and frequent deletions

Frequent copy number deletions have been defined from PURPLE calls and GISTIC2 analyses and presented in Fig. 3a
and b (Table S31, S32, S33, and S36). The statistical association between frequent deletions described in Fig. 3a and gene
expression has been tested using linear regression corrected with purity computed by PURPLE when available and with
purity estimated by transcriptomic data when available or pathological estimated otherwise. Each copy number deletion
type has been tested against true wild-type (WT) cases meaning with no other alterations (other copy number variant
types, SNVs, SVs, or transcript fusion). The deleted cases can also include other alterations (Fig. 3a). Of note, we have
reproduced our analyses and excluded these cases with other alteration types and found the same significant differences in
gene expression with q-values≤ 0.0001 for NF2, MTAP, and BAP1, and WT vs. heterozygous, and WT vs. homozygous for
CDKN2A (not a significant difference between heterozygous and homozygous CDKN2A deletions).

1.8.10 WGD expression analyses

To identify significant differentially expressed genes associated with WGD status, we employed the same strategy intro-
duced by Quinton etal.12. In brief, the expression of each gene (log2-transformed TPM+1 values) was modeled as a function
of WGD + WGS-estimated purity + local_copy_Number. The purity, local_copy_number (log2(integer total copy number)),
and WGD status were obtained from PURPLE predictions. Genes were considered significantly associated with WGD sta-
tus if they had an FDR q-value of less than 0.05. Pathway enrichment analyses were performed with the hypeR99 package
(version 1.9.0) using a hypergeometric test with the MSigDB Hallmark gene sets (version 7.5.1) and the list of differentially
expressed WGD genes and considering a universe of 23,467 genes (default in hypeR), and separating the list of upregulated
and downregulated genes. Note that because the number of significantly upregulated and downregulated genes had differ-
ent orders of magnitude (137 upregulated vs. 4,129), the proportion of overlap expected by chance are much higher in the
downregulated GSEA while even modest overlaps (e.g., 6 genes) in the upregulated GSEA are sufficiently surprising to be
statistically significant. Pathways with an FDR q-value of less than 0.05 were considered significantly associated with WGD
status. We also tested an alternative model considering a multiplicative correction for tumor purity as suggested in Zheng
etal. 2017100, where expression is a function of WGD:purity + local_copy_Number:purity (where “:" indicates interaction);
these results confirm the down-regulation of immune pathways and in particular interferon pathways in WGD+ tumors.
Results are reported in Tables S9-10 and presented in Fig. S18.

1.9 DNA methylation

1.9.1 EPIC 850k methylation array details

For each sample, 600 ng of purified DNA were bisulfite converted using the EZ-96 DNA Methylation kit (Zymo Research
Corp., CA, USA, catalog number D5004) following the manufacturer’s recommendations for Infinium assays. Then, 250
ng of bisulfite-converted DNA was used for amplification, fragmentation and finally hybridisation on Infinium Methyla-
tionEPIC v1.0 BeadChip (Illumina Inc., CA, USA, catalog number WG-317-1003), following the manufacturer’s protocol.
Chips were scanned using Illumina iScan to produce two-color raw data files (IDAT format).

Each chip holds eight samples, and the 140 samples were spread over 19 chips. We used stratified randomisation to
mitigate the batch effects, samples were arranged over the chips to evenly distribute, in order of priority, histopathological
type, major epithelioid subtype, provider, sex, smoking status, age and professional asbestos exposure. However, due
to differences in the number of each histopathological type, and date of sample arrival, four of the 19 chips contained
exclusively one type. Technical replicates were placed on different chips, whilst ITH and adjacent normal samples were
placed on the same chip as their corresponding tumor sample. The position of samples on each chip was then randomized.

1.9.2 Data processing details

We first performed quality control checks on the raw data. Two-color intensity data of internal control probes were manually
inspected to check the quality of successive sample preparation steps (bisulfite conversion, hybridisation, extension, and
staining; function plotQC, ENmix). There was one outlier, the technical replicate MESO_056_T1, when comparing per
sample log2 methylated and unmethylated chip-wise median signal intensity (function getQC, minfi), and no samples
displayed an overall p-detection value > 0.01 (function detectionP, minfi). The poor quality sample, MESO_056_T1, was
excluded from subsequent processing. Sex was assigned using a predictor based on the median total signal intensity of sex
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chromosomes, with a cutoff of -2 log2 estimated copy number difference between males and females (function getSex, minfi).
One sample was identified to be discordant between predicted (female) and clinically reported (male) sex, MESO_071_T.
Whole genome sequencing results from matched blood confirmed that the participant was male, whilst the tumor displayed
losses on chrY and gains on chrX.

Four groups of probes were removed: (i) poor performing probes with a p-detection value > 0.01 in at least one sample
(16,497 probes discarded), p-detection value was computed by comparing the total signal (methylated and unmethylated) of
each probe with the background signal level from non-negative control probes (function detectionP, minfi) (ii) cross-reactive
probes (42,552 probes discarded), cross-reactive probes co-hybridise to multiple locations within the genome and therefore
cannot be reliably investigated101 (iii) probes on the sex chromosomes (17,144 probes discarded), and (iv) probes with SNPs
within the single base extension site, or target CpG site, at a minor allele frequency of > 5% (database dbSNP build 137),
(8,411 probes discarded, function dropLociWithSnps, minfi).

1.9.3 Processing of publicly available DNA methylation data

DNA methylation array data (IlluminaHumanMethylation450k BeadChip array IDAT files) from the TCGA mesothelioma
cohort4 were downloaded from the GDC legacy archive (https://portal.gdc.cancer.gov/legacy-archive/search/),
and from the Iorio etal.18 cell line cohort from GEO repository (dataset GSE68379), respectively. Datasets were then imported
into R and pre-processed using R packages minfi (version 1.34.0) and ENmix (version 1.25.1) individually. Data processing
was performed as per the MESOMICS cohort, no samples failed QC steps or were discordant for sex. Probes with p-detection
value > 0.01, cross-reactive probes102, probes on sex chromosomes, and those associated with SNPs were discarded. This
resulted in normalized, filtered datasets of 439,417 probes for 74 samples for the TCGA cohort4, and 436,125 probes for 21
samples for the Iorio cell line cohorts18. Beta and M-values were extracted (functions getBeta and getM, minfi), and probes
recording M-values of −∞ for at least one sample were replaced with the next lowest M-value in the dataset.

Where DNA methylation array data was required for the MESOMICS and TCGA cohorts together (see Integrative unsu-
pervised analysis), data were combined and processed as follows. IDAT files for 126 MESOMICS samples (excluding ITH
samples), and 74 TCGA samples were imported into R as separate RGSets. The TCGA RGSet was converted to array type
IlluminaHumanMethylationEPIC and combined with the MESOMICS RGSet (function convertArray and combineArrays
from R package minfi). All samples passed QC. One sample was identified to be discordant between predicted and clini-
cally reported sex, MESO_071_T, as previously described. Subsequent processing was as per the MESOMICS cohort, and
56,308 probes were discarded (16,588 with p-detection value > 0.01, 26,254 cross-reactive, 8,838 sex chromosome, and 4,628
SNP-associated). This resulted in a normalized, filtered dataset of 396,145 probes for 200 samples. Beta and M-values were
extracted (functions getBeta and getM, minfi), one hundred and twenty eight probes recorded M-values of −∞ for at least
one sample and were replaced with the next lowest M-value in the dataset. Seven samples were then removed from the beta
and M matrices (all MESOMICS samples), three normal tissues, one technical replicate and three non-chimionaif samples,
resulting in a dataset of 193 samples.

1.9.4 Global methylation level

DNA methylation level at LINE1 repetitive elements was used as an estimate of global methylation level. Methylation levels
at LINE1 repetitive elements were calculated using the REMP package103 (version 1.12.0) functions to extract M and beta
values of CpGs that are located in LINE1. REMP functions were performed on the normalized, filtered M-table containing
781,245 probes, and identified 23,906 probes located in LINE1 elements. Average M and beta values were then calculated
for each individual sample across all LINE1 probes respectively to obtain mean LINE1 methylation levels per sample. The
mean M-values were used for statistical analysis of associations between global methylation levels and features of interest
(Table S7), while beta values were used for plotting significant findings. An examination of the mean methylation level
across LINE1 probes identified one outlier, MESO_040_T, for which the global level of methylation appears particularly low
in comparison to the rest of the cohort, nevertheless this single sample only marginally influenced the relationship between
LINE1 and other variables mentioned in the main text.

1.9.5 Regional methylation analysis

Methylation profile within promoter, enhancer and gene body regions were examined as follows. Array probes were clas-
sified as promoter, enhancer, gene body or other, using annotations provided in the EPIC 850K array manifest b5 (version 1.0
b5, downloaded from: https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.
html). Probes with a value of “Promoter_Associated” in the column ‘Regulatory_Feature_Group’ were assigned as pro-
moter probes, those with any value in the column ‘Phantom5_Enhancers’ were assigned as enhancer probes, and probes
with a value including “Body” or “1stExon” in the column ‘UCSC_RefGene_Group’ were assigned as gene body probes.
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Probes which fell into multiple groups were classified as promoter first, if applicable, then as enhancer probes. The dataset
of 781,245 probes contained 102,341 promoter-assigned probes, 23,858 enhancer-assigned probes, and 317,281 gene body
assigned probes.

Average M and beta values were calculated for each individual sample across all promoter, enhancer and gene body
probes to obtain mean promoter, enhancer and gene body methylation levels per sample respectively. The mean M-values
were used for statistical analysis of associations between regional methylation levels and features of interest, while beta
values were used for plotting significant findings.

1.9.6 Deconvolution of enhancer methylation profile

Deconvolution of enhancer methylation levels was performed with non-negative matrix factorisation using R package
MeDeCom104 (version 1.0.0). The 5,000 most variable enhancer probes (variance calculated from beta values) were input to
identify latent methylation components (LMC, cell-type specific methylation profiles). Values of k = 3 and λ = 0.01 were
selected by examining the resulting cross-validation error plot; LMC values are reported in Table S8. Attributing the three
resulting latent methylation components to cell types was performed through Pearson correlation tests of proportion of each
LMC present in a sample against the proportion of individual cell types within each sample (Fig. S2). Proportions of B cells,
M1 and M2 macrophages, monocytes, neutrophils, NK cells, T-CD8+, T-CD4+, T regulatory cells and dendritic cells were
estimated from the result of quanTIseq analysis of RNA sequencing data (Fig. S2A), see Immune contexture deconvolution
from expression data. Proportions of sarcomatoid and epithelioid cell types were estimated by histopathological review by
the study pathologist F.G.-S., see Pathological review (Table S2).

1.9.7 CpG island methylator phenotype index details

We used probes denoted as “Island” in the Epic 850k array manifest b5 column ‘Relation_to_UCSC_CpG_Island’ and de-
fined islands from manifest column ‘Island_name.’ CIMP index values ranged from 0.32 to 0.56, meaning 32% to 56% of
all islands represented on the array were considered methylated per sample. The CIMP index in the MESOMICS cohort
ranged from 0.32 to 0.47, and in the TCGA cohort4 from 0.31 to 0.44. There was no significant difference in the distribution
of CIMP index values between MESOMICS and TCGA samples (p-value = 0.98, student’s t test).

We have been deliberate in not describing the finding of a higher CIMP index in some MESOMICS and TCGA samples
as a CIMP+ phenotype as the method we have used to investigate CpG island methylation level, based on DNA methyla-
tion array data, differs from the classical gene panel model assessed through methylation-specific PCR 51,105. Instead we
refer to our measurement as a CIMP index, with a continuous rather than categorical interpretation. Nevertheless, we did
compute a CIMP proxy based on the mean methylation level (beta value) of promoter CpG islands for the five genes in
the Weisenberger etal.105 panel. The CIMP proxy was computed based on the mean methylation level of promoter CpG
islands for five genes only: CACNA1G (island coordinates (hg19): chr17:48636103-48639279), IGF2 (chr11:2158951-2162484),
NEUROG1 (chr5:134870740-134872051), RUNX3 (chr1:25255527-25259005), and SOCS1 (chr16:11348541-11350803) (selected
from Weisenberger etal.105, Table S7). We found this proxy to be significantly correlated with CIMP index for both the ME-
SOMICS (p-value= 1.36 × 10−36, r = 0.86) and TCGA (p-value=3.08×10−24, r = 0.84) cohorts (Table S7). Therefore we are
confident in our finding of variation in CIMP within malignant pleural mesothelioma, and that a subset of samples display
a high level of CIMP.

Another method for calculating CIMP index7 was also tested (in the MESOMICS cohort only), here called CIMP-normal
index. Probes located within CpG islands were retained, the mean beta value across all probes within each island was
calculated for the three adjacent normal tissues available in the MESOMICS cohort. Islands whose methylation level was
< 30% in all three adjacent normal samples were retained (n = 15, 824), denoted as normally hypomethylated islands.
The CIMP-normal index was then calculated as the proportion of these 15,824 islands with ≥ 30% methylation (beta value
≥ 0.3) per sample. CIMP-normal index values ranged from 0.013 to 0.19, corresponding to 0.13% to 19% of normally
hypomethylated islands to be hypermethylated per sample (Table S7). There was a significant correlation between the
two CIMP index values calculated (p-value=3.27×10−66, r =0.96). The method for CIMP-normal index was based on
first identifying normally hypomethylated islands, therefore requiring normal pleura or mesothelium. The normal tissues
available in the MESOMICS cohort are adjacent to mesothelioma samples, therefore that they are unlikely to be pure non-
tumour tissues, as such, the CIMP index rather than the CIMP-normal index was used for subsequent analysis.

1.9.8 Annotating IlluminaHumanMethylationEPIC array probes with gene ID

Probes were assigned to a gene based on the contents of the EPIC 850K array manifest b5 column ‘UCSC_RefGene_Name’.
Additionally, promoter and enhancer only associated probes which did not have any gene annotation in the manifest
column ‘UCSC_RefGene_Name’ were then assigned a ‘nearest gene’ annotation using the function matchGenes with the
TxDb.Hsapiens.UCSC.hg19.knownGene library from R package bumphunter.
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1.9.9 Correlation between methylation and expression

Correlation between methylation levels and gene expression was performed as follows. Regional level testing: probes were
divided into promoter, enhancer and gene body (see Regional methylation analysis), probe groups were then filtered to
retain only those with a difference of > 0.1 beta value between lowest and highest methylation level across 119 samples
(samples input to MOFA analysis i). Pearson correlation tests were performed between the M-value of all probes within a
region group and their corresponding gene expression level (normalized using variance stabilization transformation, filtered
for genes having > 1 FPKM difference across 109 samples). This resulted in testing within 109 samples with both methylation
and expression data of 37,067 promoter probes against expression of 8,444 genes, 20,308 enhancer probes against expression
of 6,539 genes, and 262,820 gene body probes against expression 15,825 genes. p-values were adjusted for multiple testing
using Benjamini-Hochberg method within region groups, probes were considered correlated with expression at q-value ≤
0.05.

Island level testing: probes located within Cpg islands (denoted as “Island” in the Epic 850k array manifest b5 col-
umn ‘Relation_to_UCSC_CpG_Island’) were retained, the mean M-value across all probes within each island (identified
from manifest column ‘Island_name’) was calculated per sample resulting in M-values for 24,891 CpG islands. Pearson
correlation tests were performed between the M-value of each island and their corresponding gene expression level (nor-
malized using variance stabilization transformation, filtered for genes having > 1 FPKM difference across 109 samples).
Corresponding genes for each island were identified as the corresponding gene for each probe within the island (see An-
notating IlluminaHumanMethylationEPIC array probes with gene ID). This resulted in testing within 109 samples with
both methylation and expression data of 21,189 islands against expression of 12,992 genes.

1.10 Epithelial-mesenchymal transition methylation quantification

1.10.1 Epithelial-mesenchymal transition expression score

A score of epithelial-mesenchymal transition (EMT) per sample was calculated from variance-stabilized read counts as
the mean expression of 52 mesenchymal-associated genes minus the mean expression of 25 epithelial-associated genes, as
previously described4,106. A higher EMT score indicates a more mesenchymal-like gene expression profile than epithelial-
like. Results are reported in Table S7.

1.10.2 Methylation

EMT gene methylation levels were calculated as follows. Firstly, all probes within promoter, enhancer, or gene body groups
associated with at least one of the panel of 77 EMT-associated genes106 in the manifest column ‘UCSC_RefGene_Name’
or ‘nearest gene’ annotation (function matchGenes, bumphunter) were selected. This resulted in 3,764 probes across all
77 genes, specifically 153 promoter probes corresponding to 17 EMT genes, 209 enhancer probes corresponding to 54 EMT
genes, 2,575 body probes corresponding to 76 EMT genes, and an additional 827 probes to promoter, enhancer, or gene body
regions, corresponding to 73 genes. The mean M and beta values across all epithelial and mesenchymal genes separately
for each region group were then calculated per sample.

1.11 Epithelial (E) and Sarcomatoid (S) scores

For each sample, E- and S-scores were computed for the MESOMICS, TCGA4, Bueno3 and cell-lines samples5,18 using
expression data (normalized read count for MESOMICS, TCGA, Bueno and expression array data for cell-lines) and the
method WISP from Blum etal.7 (R package WISP version 2.3). The method relies en unsupervised clustering to identify
three clusters, enriched for samples of the Epithelioid, Sarcomatoid histopathological types and Normal cells, respectively,
and then uses these samples to produce signature expression profiles that are used to perform a deconvolution of all the
samples using a constrained linear model. Results are presented in Table S7 and S23.

1.12 Genomic instability scores

We estimated genomic instability from all omic layers: genomic, expression, and methylation profiles. From the genome,
we calculated the proportion of changes in the genome in terms of copy number. From expression data, we computed a
hallmark score using hallmarks of cancer107 by summing the normalized read count of the genes belonging to each hallmark.
Finally, we used global methylation level (see Global methylation level section) as a third proxy of genomic instability.
Values are reported in Table S7. We performed pairwise comparisons between these three estimates and found significant
correlations (q-value = 1.53×10−5; q-value = 6.63×10−3; and q-values = 1.39×10−3 for genomic vs. transcriptomic, genomic
vs. epigenomic, and transcriptomic vs. epigenomic estimates, respectively).
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1.13 Integrative unsupervised analyses

1.13.1 Pre-processing of methylation data details

We used M-values of 781,245, 426,213, and 396,145 CpGs from MESOMICS, TCGA4, combined MESOMICS/TCGA, and
Iorio cell line18 cohorts cohorts respectively, which theoretically range from −∞ to +∞ and have a bimodal distribution,
being not affected by heteroscedasticity contrary to beta values81. Following the same approach as for expression data, sex-
chromosomes CpGs have been excluded (see Methylation section), resulting in 781,245, 426,213, 396,145, and 436,125 CpGs
available after QC (see DNA methylation Sequencing section). After splitting the data into three sets (MethPro, MethEnh,
and MethBod), we obtained respectively 37,884, 23,169 and 291,877 CpGs for analysis (i); 27,235, 4,953 and 125,228 for
analysis (iii); 37,951, 5,174, and 132,546 for analysis (iv), and 30,387, 4,757, and 111,774 for analysis (v). To note, analysis
(i) was performed with data from the EPIC 850K array, whilst analyses (iii)-(iv) were performed on data generated from
either the EPIC aray or HM450K array. Therefore only probes found on both arrays were used for analyses (iii)-(iv). For
comparison in analysis (i) based on EPIC array data, 77% of promoter probes (3,849), 78% of gene body probes (3,878), and
30% of enhancer probes (1,520) used are also on the HM450K array.

1.13.2 Pre-processing of copy number changes details

For the TCGA samples, the copy number state has been aligned on the hg19 genome. Hence, specifically for analysis (iv),
the transformation of hg19 coordinates into hg38 has been required to integrate copy number data from both MESOMICS
and TCGA samples within the same data set. To do so, we used liftOver R package (version 1.14.0) to transform segment
coordinates into hg38 genome. Hg19 positions not found by the software because overlapping uncertain regions such as
centromeres, have been replaced by the corresponding hg38 centromere coordinates. Then, for the remaining positions
not found in the hg38 genome, we first listed, for each segment, the overlapping genes in hg19 and hg38 coordinates and
compared the two lists. Then, we saved the same coordinates in case of identical lists and expanded the coordinates to
include the overlapping genes that are missing. This expansion has been made only and only if the resulting segment
length did not exceed an increase of 5% of the original segment and less than the maximum length difference observed in
the transformation process made by liftOver. If these criteria were not filled, the given gene was not included and thus, the
coordinates remained unchanged.

The copy number of each segment was computed as total = purity × total + (1-purity) × 2 and minor = purity × minor
+ (1-purity) with total and minor the value assigned for each gene in the Total and Minor data set, respectively. In case of
segment breaks occurring within a given gene sequence, the mean value of the two segments overlapping is assigned to the
gene. In the particular case of the MPM cell lines cohort, the copy number changes have been assessed using SNP arrays,
giving only a round estimate of the copy number at the gene level and because the purity is estimated as 1, the resulting total
data corresponds to integer values. Note that although available (see Fig. S6), because they were computed from exome
data instead of genome-wide data as the MESOMICS and TCGA4 cohorts, CNVs from the Bueno cohort were not included
in MOFA.

1.13.3 Pre-processing of drug response data

We used drug response data (used IC50 in units of mean µM) only for the analysis (v) on MPM cell lines, combining the
drug response of 265 drugs from Iorio18. Among them, three have also been tested on the de Reyniès cell lines5 and their
responses are reported in Blum etal7.

1.13.4 Multi-omic integrative analyses details

Some samples did not have all the data sets chosen to be integrated available, such as for Bueno and colleagues’ samples3

missing methylation array data. Fortunately, MOFA was shown to handle missing data, including samples with entire ‘omic
techniques missing, by using the correlated signals from several datasets to accurately reconstruct latent factors108. Note
that our sample size is in line with the size of n =100 that was shown to allow to capture the main sources of variation
in simulated datasets in the original MOFA study, across a wide range of omic datasets (1 to 21), features per dataset
(100 to 10,000), latent factors (5 to 60), and missing values (from 0 to 90%)108; we also mention that n > 100 fits general
recommendations for dimensionality reduction based on matrix factorization such as PCA for stable latent factors and
weights so the results from the sample can accurately be generalized to the population109.

To compare multi-omic with uni-omic unsupervised analyses, we correlated the MOFA coordinates of the samples shared
by MOFA and the PCAs with their coordinates in PCA-exp (see RNA Sequencing). Results show that the main 4 MOFA
factors all have a counterpart in the PCA. For the MOFA-Cell lines, weights of the features from the drug layer and their
correlations with the latent factors are represented in Fig. S4 and Tables S25-26.
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MOFA has multiple advantages when capturing molecular variation compared to classical clustering approaches such as
ConsensusCluster+ and icluster+110,111, such as allowing us to integrate arbitrarily many ‘omic datasets (vs a single dataset
in ConsensusCluster+ and four in icluster+), capturing both continuous and discrete independent sources of biological
variation (vs. discrete clusters only), and quantifying the importance of each ‘omic layer in separating samples and clusters
(vs. unknown relationships between clusters). However, in order to compare MOFA results with previous results we
compared our results with those obtained using the exact methods used in previous large-scale genomic studies of MPM
(ConsensusCluster+ as in Bueno etal. 20163, and icluster+ as in Hmeljak etal. 20184).

We ran consensus clustering on gene expression data using the ConsensusCluster+ R package version 1.60. Because
contrary to MOFA, ConsensusCluster+ and icluster+ cannot handle missing data, from the original gene expression ma-
trix input into MOFA of size 120x5,000, we remove samples that miss any of the 5,000 genes, resulting in a filtered gene
expression matrix of 109 samples and 5,000 genes. We run consensus clustering on this gene expression matrix using Con-
sensusClusterPlus for K = 2 to 16, where K is the number of clusters. The clustering algorithm used is k-means. A consensus
matrix heatmap was generated by the method for each K, as well as the consensus cumulative distribution function and the
relative change in area under CDF curve as a function of K. We visualized samples in the space of each pair of MOFA latent
factors from LF1 to LF4, and colored the samples by the results of consensus clustering with different K’s. For each K and
each latent factor, we quantitatively assess the association between the latent factor and the clusters using Kruskal-Wallis
rank sum test and report the p-value of the test to investigate its statistical significance. Of note, we did not use the one-way
ANOVA test, because the ANOVA assumptions - the homogeneity of variances across groups and the normality of data -
were not met. To assess the clustering performance of consensus clustering, we used the Silhouette method. We use one
minus the consensus value as the distance between two samples 112. Based on this distance measure, the Silhouette value
for each sample was computed to measure the similarity of a sample to its own cluster compared to other clusters. We
visualized the average Silhouette width of all samples for K from 2 to 16. Using a range of selected values from -0.25 to
0.75 as thresholds, we also computed the proportion of samples with Silhouette width below the threshold for each K. This
proportion of samples that were poorly clustered indicates the unstability of the clustering method. For K = 3, we show
in a heatmap the co-clustering frequency patterns of the samples for all clustering methods considered in the consensus
clustering.

We ran integrative clustering on MESOMICS data using the iClusterPlus R package version 1.32. The method takes only
up to four matrices, so we used the following four matrices: one total CNV matrix, one alterations matrix, one gene expres-
sion matrix, and one matrix formed by concatenating the three methylation matrices input into MOFA. The CNV matrix
had 5,000 features, the alterations matrix has 533, the gene expression matrix had 5,000, and the concatenated methylation
matrix had 15,000. There were 105 samples left after the removal of those with missing data. We ran integrative clustering
for K = 2 to 16 using the default number of points to sample. The alterations data is modeled by the bionomial distri-
bution, while the others are modeled by Gaussian distributions. Similar to how we compared MOFA with the consensus
clustering, we visualized samples in each two-dimensional latent factor space colored by the results of integrative cluster-
ing. For selected K, we also visualized samples in the one-dimensional space of one latent factor using the beeswarm plot.
We performed the Kruskal-Wallis rank sum test between each latent factor and each K and report the test significance in
a heatmap. We also assessed the clustering performance of integrative clustering. We retrieved the optimal latent space
representation of the samples for each K from the integrative clustering method. We used the pairwise Euclidean distances
between samples based on the latent space representation and the clustering result to compute the Silhouette value, as well
as the proportion of samples with Silhouette width below the threshold. For K = 4, we show in a heatmap the co-clustering
frequency patterns of the samples for clustering with all lambda parameters considered in the integrative clustering.

Results of the comparisons between ConsensusCluster+ and icluster+ and MOFA are shown in Extended data fig. 10.
These methods capture some of the variation in the dataset: the three archetypes (B and F, to be compared with Fig. 2a),
higher-ploidy samples (G, middle panel), and the CIMP index (C, G, right panels), but in a much cruder way than with
MOFA and the Pareto task analysis, mostly because the discreteness assumption of clustering methods misses the inherent
continuity in the data (noted in mesothelioma by Blum etal. 20197, and ourselves, Alcala etal. 20196). Indeed we observe
small and fragile clusters, with negative or low (<0.25) silhouette widths for a large number of samples (more than 25%
of samples for K greater than or equal to 4, the value used in both Bueno etal. 20163 and Hmeljak etal. 20184), indicating
uncertain or wrong cluster assignment (D and H), and preventing downstream analyses. We think that these new analyses
both validate our results, and at the same time highlight the need to use more modern techniques that were not yet available
in previous mesothelioma studies. Note that MOFA is increasingly becoming a new standard in multi-omic analyses 113,114.

1.13.5 Interpreting MOFA latent factors

We selected latent factors for downstream analysis based on their prognostic value and the amount of molecular variance
they explained. We first retained factors that were significantly associated with survival (Cox proportional hazards models
with each LF as continuous variable, see Survival analysis section above, and Table S15). Then, we computed the variance
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that each factor explained in each of the four types of alterations input into MOFA (genomic alterations, CNVs, gene expres-
sion, methylation) as in a classical principal component analysis: the sum across features of the squared cosine similarities
between a focal latent factor and each feature, which is equal to the R2 of a linear model with a alteration single as explained
variable (e.g., the expression of gene X) and a latent factor as explanatory variable (i.e., expression_X Factor1), averaged
across all alterations. Thus, for each of the seven ‘omic datasets input into MOFA, and for each of the 10 LFs, we obtain
a quantity that ranges from 0 (the latent factor explains no inter-patient variation for any feature of this dataset) to 100%
(the latent factor explains all inter-patient variation for all features). We also show in Extended data fig. 2 two extreme
examples that illustrate a molecular feature which is badly explained by a latent factor (panel A) and a feature which is
well-explained by a latent factor (panel B), and typical features associated with each latent factor (panels D-G). Note that
each R2 is thus computed independently, so the fact that we split methylation datasets into three does not impact the R2

of the expression or alteration datasets for instance, and one could analyze in the future how each latent factor explains
inter-patient variation with other choices of features (e.g., splitting expression into multiple pathways) without these new
analyses affecting what the numbers we report in Fig. 1a and Extended data fig. 2. Also note that due to the difficulty
to properly account for the proportion of variance explained for an indicator variable (0:wild type, 1:altered) using cosine
similarities (or correlation coefficients or R2 of linear models), we rather display in Fig. 1a the pseudo R2 of McKelvey and
Zavoina, using the Veall-Zimmermann estimator115. Indeed, classical R2 for indicator variables are known to have a the-
oretical upper bound strictly smaller than 1 and thus to vastly underestimate the actual proportion of variance explained;
in contrast, the Veall-Zimmermann, which is based on a logistic regression model which better models indicator variables,
was shown to have no such upper bound and to have a similar interpretation as classical R2 (proportion of variance in an
indicator variable explained by a feature). We indeed show in Extended data fig. 2C that classical R2 are much smaller than
the Veall-Zimmermann pseudo R2.

We retained factors explaining more than 10% of variance of at least one omic dataset and ordered factors based on the
sum of the proportion of variance across all omic types they explained. This led to four latent factors for the discovery
cohort. The resulting ten latent factors capture 54% of the molecular variability in the omic dataset integrated, while the
first four latent factors alone capture 32% of the variance (Table S5). Additionally, because the likelihood of a latent factor
within matrix factorization analyses such as MOFA and PCA does not depend on its sign, the directions of latent factors are
arbitrary and we chose the direction that best fitted their interpretation: for LF1, from haploid (negative values) to tetraploid
(positive values), for LF2, from low epithelioid component (negative values) to high epithelioid component (positive values),
for LF3, from low infiltration (negative values) to high infiltration (positive values), and for LF4 from low CIMP index
(negative values) to high CIMP index (positive values). Note that the four LFs that have been retained for further analyses
are statistically independent of one another. Indeed, we expect under statistical independence of the factors that the R2 of a
model combining all factors of the form feature Factor1+Factor2+Factor3+Factor4 (see “LF1 to LF4 predicted" in Extended
data fig. 2B) would be the sum of the R2 of each independent model feature Factor1, feature Factor2, feature Factor3, and
feature Factor4. In contrast, if the factors were completely collinear, the R2 of all independent models would be equal and
the R2 of the combined model would be equal to that of any of the independent models. We do observe that the R2 of the
combined model is very close to that expected under perfect statistical independence (see “LF1 to LF4 expected” and “LF1
to LF4 observed” in Extended data fig. 2B), corroborating the statistical independence of the factors for each omic dataset.
Of note, some of the other latent factors are not totally statistically independent (LF5 and LF9). With larger cohorts, future
studies might reproduce some of these other factors and have more power to detect their influence on survival and thus
decide to study them to further stratify patients and we thus report them in the supplementary tables.

We tested the association between each LF and clinical, morphological, and epidemiological variables using linear re-
gression (Table S6). As quality control, we also assessed their associations with the technical variables selected to detect
potential batch effects in the data using linear regression (Fig. S3D). The proportion of cells that belong to different immune
cell types (see Immune contexture deconvolution from expression data section) were quantified and correlated with each
dimension using Pearson correlation tests (Tables S2 and S6), as were the association between MOFA latent factors and
previous classifications (Fig. 1b).

In order to replicate our findings in Bueno and TCGA cohorts3,4 we used MOFA analyses (ii) and (iii) and matched
their resulting latent factors using those from MOFA-3-cohorts (MOFA analysis (iv) including the MESOMICS, Bueno, and
TCGA samples) as intermediary between the discovery cohort (MOFA MESOMICS analysis (i)) and these two intedentant
replication cohorts. We firstly performed Pearson’s correlation tests between the position of Bueno and TCGA samples
within the MOFA-3-cohorts and their position in the individual MOFA-TCGA and MOFA-Bueno (Fig. S1A). In the case of
the TCGA cohort, we observed ambiguity in the identification of the Morphological factor (MESOMICS LF2) and Adaptive-
response factor (MESOMICS LF3) in MOFA TCGA (Fig. S1A, middle panel) using simply this method for LFs identification.
In order to improve the way we identify these factors within the TCGA data, we used the optimal transformation (rotation,
translation, and scaling) between two point patterns according to the least-squares estimation from Umeyama116. We firstly
transformed the MOFA-3-cohorts LFs to match those of the MOFA-MESOMICS, and then transformed the MOFA-TCGA
LFs to match those of the transformed MOFA-3-cohorts. This resulted in the optimal match between the LFs of the MOFA-
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MESOMICS and MOFA-TCGA cohorts, while preserving the relative position of samples within these LFs. In Table S4, we
reported both the raw and transformed factors for MOFA-TCGA and all the replication analyses related to MOFA factors, in
the TCGA cohort, have thus been done using the transformed MOFA-TCGA factors. Of note, in this process, we excluded
the Ploidy factor from the set of factors used to transform the matrices because it would add noisiness to the computation
since the samples without genomic data are very often imprecisely placed by the MOFA algorithm along the Ploidy factors.

1.13.6 Survival prediction

In order to evaluate the ability of the MOFA factors to predict survival, we compared twenty-two survival models: (i) a
model based on the three histopathological types (categorical variables, MME, MMB, and MMS); (ii) a model based on the
proportion of sarcomatoid content (continuous variable, fitted with a penalized cubic spline); (iii) a model based on the log2
ratio of CLDN15/VIM (C/V) expression in Bueno and colleagues3 (continuous variable, fitted with a penalized cubic spline;
see values in Table S7); (iv-vi) a model based on the E-score, S-score and the combination of the two, respectively, from Blum
and colleagues7 (continuous variable, fitted with penalized cubic splines without interaction; see values in Table S7); (vii) a
model based on AI prognostic score (continuous variable, fitted with a penalized cubic spline); (viii-xi) models based on the
a-dimensional summary of molecular data using either LF1, LF2, LF3, or LF4 as a continuous variable, respectively (each
with a single continuous variable, fitted with a penalized cubic spline); (xii-xxii), models based on the two, three, four-
dimensional summary of molecular data using both the combination of two, three, and four of the four LFs as continuous
variables, respectively (continuous variables, fitted with penalized cubic spline without interaction). To do so, we assessed
their fits using the time-dependent Area Under the ROC Curve (AUC) and its integral (iAUC117, R package survAUC,
version 1.1–1, Tables S17-S18), computed using the test set. This time-dependent AUC is used to evaluate the ability of
an explanatory variable to predict patients with a survival lower or higher than a given threshold. Its integral summarizes
the results of time-dependent AUC over the threshold value, providing an interpretation similar to that of classical AUC.
In each model, we included sex and age; penalized splines were fitted using the pspline function from package survival,
with three degrees of freedom. Because of the high proportion of missing asbestos and smoking status information and the
absence of significant association between these variables and survival in univariate models (see Survival analysis section),
smoking and asbestos were not included in the model as covariables.

To assess the out-of-sample prediction performance, we used 4-fold cross-validation in the MESOMICS cohort (Extended
data fig. 5A-C, Table S19). We also assessed the prediction performance on a completely independent cohort by fitting the
model on the whole MESOMICS cohort and testing it on the TCGA cohort4, using bootstrapping (n =2,000 bootstraps) on
the test set to assess variation in performance (Extended data fig. 5D-F, Table S20). Standard errors in the iAUC mean
estimate were computed either from the 4 folds or the 2000 bootstraps, respectively, for the MESOMICS and TCGA. We
also looked at the model fits on the MESOMICS cohort (Extended data fig. 5A-C and Table S17), which confirmed that the
MOFA with 4 LFs (xxii) provided the best fit of all models, and also led to the lowest Akaike Information Criteria (AIC=524.5
for the model with the LFs, vs. AIC=569.8 for the best AIC of non-MOFA models, that of the S-score + E-score; Table S17,
see Table S16 for E- and S-scores in the TCGA and Bueno cohorts3,4), which shows that the greater number of parameters
in the MOFA survival model is not enough to explain its better performance.

We also assessed the significance of surgery on overall survival after accounting for the four latent factors and sex, and
found that surgery had a significant impact (p = 0.007, hazard ratio of 2.02, Table S14).

1.13.7 Intra tumor heterogeneity analyses

The ploidy, morphology, and CIMP factors represented in Extended data Fig. 9 were identified in the MOFA-ITH by corre-
lating the coordinates of non-ITH samples in the MOFA-ITH with their coordinates in the MOFA from Fig. 1, and choosing
the largest match (correlations were all r > 0.9). To avoid spurious ITH to be detected, we excluded ITH samples with
uncertain estimated ploidy (min and max ploidy estimates with a difference greater than 1), and because the ploidy factor
overwhelmingly represents variance in genomic data (CNVs; Table S52), samples with missing WGD information were not
represented in the ploidy factor (NA values in Table S51). Similarly, the Pareto front was fitted on the MOFA-ITH using the
method described below (Table S51). Euclidean distances between each pair of samples were then computed for each factor
of the MOFA-ITH separately (Extended data fig. 9A and Fig. S22A). Proportions of the tumor from different components
(% Sarcomatoid, % Acinar, % immune infiltration) presented in Extended data fig. 9B are that reported by the pathologist,
and included the constraint that % Sarcomatoid + % Epithelioid + % infiltration=100%, and % Acinar ≤ % Epithelioid (see
data in Table S50).
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1.14 Evolutionary tumor trade-off analyses

1.14.1 Pareto task identification details

In our case, three molecular spaces have been tested: LF2-LF3, LF2-LF3-LF4, and LF2-LF3-LF4-LF1. Each polyhedron fit
is assessed by the ratio of the volume of the best-fitting polyhedron to the volume of the convex hull of the data (t-ratio).
The more the data follows the Pareto optimality theory, the more the t-ratio metric approaches 1. Finally, the algorithm
re-calculates the t-ratio on 1000 shuffles, keeping the distribution of loading on each axis but not the associations between
them and computes a one-sided p-value to estimate the statistical significance of the fit.

We chose to represent the most significant fit with the smallest number k because of the limited number of samples but
all the fit results are presented in Table S28, and the best fit and an alternative non-significant fit are presented in Fig. S5
for illustration. Using MOFA axes, we found k = 3 archetypes in the LF2-LF3 space and reproduced, for each analysis (i),
(ii), (iii), and (iv), the fit using the corresponding expression PCA in the PC1-PC2 space (see Extended data fig. 3 for the fit
for model ii, and iii). In order to evaluate the reproduction of the three archetypes discovered in (i) (MESOMICS cohort)
into (ii) (Bueno’s cohorts3) and (iii) (TCGA cohort4), we used (iv) (3-cohorts) and correlated the pairwise distance between
archetypes and samples within each molecular map (Table S28). Overall, we found a strong concordance between the three
analyses (minimum absolute Pearson’s r =0.68; median r =0.84).

1.14.2 Interpretation of MPM polyhedron details

In all the analyses, the proportion of enriched genes within the enriched pathways ranged from 0.10 to 0.75 (Table S30).
Used as a quality control of the enrichment results, we assessed the fold change between the 10% closest samples vs. the
10% furthest samples from each archetype of the enriched genes belonging to each enriched pathway. More specifically,
in order to assign universal cancer task to each archetype, we referred to Hausser etal.20 and examined the GO term de-
scriptions to gather pathways in hyper-pathways as reported in Table S30. Of note, we focused our interpretation on the
non-shared hyper-pathways to infer the specific cancer task of each phenotype. Also note that, because we are interested
in reconstructing a genotype-to-phenotype map, we actually want to find genes which amplification or deletion directly
impacts gene expression and thus contrary to the WGD- vs. WGD+ differential expression analyses, we purposely avoided
correcting for copy number changes, which would have removed the signal and thus potentially lost the interesting biolog-
ical impact of copy number changes on specialization.

Similarly, we tested the association between each archetype and genomic events using linear regression and more specif-
ically, in order to infer genomic event effect-size on the Pareto front, we calculated the vector linking the centroids of the
altered and wild-type groups (centroids function from sda R package v.1.3.8). To infer to what extent alterations drive the
tumor cells toward specialization, we followed the method from Hausser etal.20 and calculated the alignment of vectors
with the front (angle between the Pareto front and the vector built from the altered and wild-type groups within the 4-
factors space), after having normalized each LF (centering and division by standard deviation). Finally, we evaluated the
driving role of genomic events associated to at least one archetype (Table S48) using these two variables (vector size and
angle to Pareto front) by permutation tests (with 1,000 permutations) in which we randomized, one genomic event at a time,
the altered and wild-type groups and compared this distribution from shuffled values with the observed values (Extended
data fig. 8).

1.15 Clonal reconstruction

1.15.1 Small variants subclonal reconstruction

To obtain accurate estimates of variant allelic fractions (VAFs), we restricted the model fitting to somatic alterations with
high-confidence VAF estimations (read depth greater than or equal to 60X and VAF greater than or equal to 0.05), and
focused on samples with matched normal tissue or blood (n = 43). We only selected variants in high-confidence CN calls:
regions with confident calls, excluding centromeric regions (based on UCSC annotation) that have notoriously more difficult
CNV calling due to larger variance in reads mapping.

We inferred whether small somatic variants were clonal or subclonal using R package MOBSTER version 1.00. MOBSTER
uses a mixture model to identify different clones in the VAF distribution. Importantly, the model uses evolutionary theory
predictions to perform more accurate subclonal reconstructions, and can test whether subclones are under natural selection
or neutral evolution by testing the presence of a “neutral tail" component, a Pareto type I distribution that is expected to be
present in exponentially growing tumors evolving under neutral evolution118. For each sample, we first fit a mixture model
to the VAF distribution from variants in regions with the most frequent CN (major and minor CN of 1 for most samples,
major and minor CN of 2 and 1 or 3 and 1 for WGD samples, and 1 and 0 or 2 and 0 for GNH samples). For each sample,
we compared the fit of models with or without neutral tail and with 1 to 3 clusters, with 10 repetitions per model with
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different initializations, resulting in 6 × 10 models per sample; we chose the best model using the ICL statistic. We assessed
the robustness of the fit using parametric bootstrapping; only models that were correctly inferred in more than 80% of
the simulations were used. Of note, the clonal cluster also provides an estimate of the sample purity based on the VAF
distribution. Multiple clusters denoting the presence of a subclone were identified in 13 samples. All 13 samples presented
a single subclone, and all were in the low-adaptive response factor range (close to archetype 3), as expected from the high
purity required to detect subclonal alterations (see Table S2 and S50); 3 samples presented a neutral tail, while the 10 others
presented a selected subclone (Fig. S23B).

We finally assigned mutations that were not included in the model fit (small variants in regions with another CN, sub-
clonal CNVs) to clones and subclones using their VAF and the fitted model. For each of the 13 samples where a subclone
was identified, we recovered the cutoff cancer cell fraction (CCF) separating clonal and subclonal alterations according to
the selected MOBSTER model. We then converted this threshold CCF to a threshold VAF by taking into account the CN
state of each alteration using the formula VAFthres = CCFthresϕ/[CNnormal × (1 − ϕ) + CNtotal × ϕ], where CNnormal is 2 for
autosomal regions and 1 for sex chromosomes, CNtotal is the total CN of the tumor, and ϕ is the MOBSTER-estimated purity.
Variants were then assigned to the clonal and subclonal categories depending on which side of the threshold they fell. Note
that this approach is similar to that used in the DPClust software119, but using the recent evolutionary-theory aware prob-
ability distributions from MOBSTER instead of Dirichlet distributions. The proportion of clonal and subclonal alterations
in the 13 samples where this analysis was possible are reported in Table S2 and Fig. S23C. Note that the small number of
samples with such clusters of subclonal alterations detected allowed us to further check visually the consistency between
the fits of different CN regions (e.g. CN neutral LOH regions should have two clonal modes, one corresponding to variants
in 1 or 2 copies, while diploid regions should have only clonal mode). Results for alterations in the driver list from Fig. 4
are presented in Fig. S23C.

1.15.2 CNV clonality reconstruction

Clonality of CNVs was assessed using the estimated fractional copy number from PURPLE. Indeed, the PURPLE algorithm
uses a penalized estimation of CN so that clonal CN segments are expected to have CN values close to an integer while
subclonal segments have non-integer CN values; we thus classified as subclonal segments with a CN deviating from an
integer value (fractional part between 0.2 and 0.8). Because of the difficulty of inferring the clonality of CNVs, we also
assessed the clonality of CNVs using software Facets90 (https://github.com/IARCbioinfo/facets-nf; release 2.0); only
CNVs consistently called as clonal or subclonal by PURPLE and Facets are reported in Fig. S21D (see Table S37 for all CNV
clonalities). Although CNVs are generally called more accurately than small variants in T-only samples, for consistency with
the rest of the clonality and evolutionary analyses, we restricted the analyses to tumors with a matched normal (n =43).

1.16 Inferring the timing of alterations

Due to the low tumor mutational burden in MPM and the high immune infiltration of many samples, we restricted the
analysis to samples with large scale events (WGD or more than 10% of the genome with LOH), and to samples with matched
normal tissue or blood (n =6).

1.16.1 Molecular time dating

Similarly to the approach from Gerstung and colleagues46 implemented in package MutationTimeR, copy number gains
and copy neutral losses of heterozygosity (LOH) were dated by comparing the number of alterations that were present in
a single copy (that appeared after the event), Nr, to the ones that were present in multiple copies (that appeared before
the event) Nl (Fig. S21). We computed Bayesian credibility intervals (BCI) for the timing of each gain and compared
results with parametric bootstrapping confidence intervals (CI). BCI were obtained by assuming that Nr followed a Poisson
distribution of parameters λr and λl , and uniform prior distributions over the interval [0,104] with the constraints that
λr < λl , because the mutation rate λl includes both mutations that occurred before and after the copy number gain, while
λr is limited to mutations that occurred before the gain; posterior distributions were numerically computed using a discrete
grid approximation of size 1001, and used to compute the posterior distribution of timings te. Bootstrapping CI proceeded
as in Gerstung and colleagues46, first drawing 1000 Nri values from a Poisson distribution of parameter Nr, and finally
inferring te from the simulations. We show in Fig. S21B that both approaches provide very similar results (correlation
between the center of the CI and BCI across dated events is r =0.99, p =4.8×10−14), but the Bayesian estimates have the
advantage of ensuring that 0 < te < 1, because of the prior imposing that λr < λl , so they are the ones reported in the main
text.

Synchronicity of duplications in the WGD sample was assessed by checking the overlap between CI for gains in the
different segments considered.
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1.16.2 Chronological time dating

We used the method validated by Gerstung and colleagues46 to date amplification events that first estimated the temporal
accumulation of CpG to TpG mutations ([C>T]pG), mostly due to spontaneous deaminations that would accumulate at
an approximately constant rate through time. In order to check whether the small number of alterations present in some
segments led to biases in our estimates, we performed the same analysis but using all mutations instead of just [C>T]pG mu-
tations. Results showed no significant systematic bias (linear regression coefficient estimated at 0.85, with 95%CI [0.69,1.01];
Fig. S21A), and CI of [C>T]pG and CI of all mutations overlapped except for MESO_008, a non-chemonaive tumor that
showed an excess of chemotherapy-associated mutational signatures that likely influenced the proportion of signatures as-
sociated with aging relative to other signatures. Overall, our results show that using all mutations increases the precision
of estimates but does not bias the results as long as we exclude non-chemonaive samples, probably because MPM do not
have SBS signatures of exogenous sources but rather only a slow temporal accumulation of mutations (see mutational sig-
natures section), so results in the main text correspond to results for all mutations. Finally, we checked whether mutation
accumulation showed a sign of temporal acceleration by comparing the number of small variants corrected for the effective
genome size (defined as in Gerstung etal.46 as 1/mean(mi/Ci), with mi the number of copies of alteration i and Ci the total
CN at this position) with the age at diagnosis (Fig. S23A); the analysis showed that small variants fit a linear accumulation
model, thus we used a rate of ×1 for chronological dating.

Because of the limited number of samples with chronological dating, we focused on testing whether the timing of such
events differed from that reported in other tumor types rather than the precise estimation of the timing in MPM. It was
reported By Gerstung and colleagues46 that whole-genome duplication (WGD), large-scale losses of heterozygosity, and
amplification of the chromosomal region including TERT, typically predate diagnosis by a decade. We tested this hypothesis
using outlier tests, where the p-value corresponds to the quantile of the empirical distribution of event timings from the
PCAWG cohort11 including more than 2500 tumors from 38 types. Note that outlier tests are designed to test whether
values observed in mesothelioma were outliers in the empirical distribution of timings of such events in other cancers, but
they cannot say whether there is a more subtle trend of slightly higher or lower average timing in mesothelioma. We report
the results of the test of this hypothesis in Fig. 5d.
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Figure S1. Multi-Omics Factor Analysis (MOFA) latent factors of the major MPM cohorts. A) Correlation between
MOFA Latent Factors (LF) integrating the 3-cohorts and individuals cohorts. B) Matching for LF1, LF2, LF3, and LF4
(columns) in the different MOFA results across MPM cohorts. Corr: Correlation coefficient.

22



A

B

C

Figure S2. Reference-free deconvolution (MeDeCom) of MESOMICS enhancer DNA methylation data. A) Correla-
tion between proportion of each inferred latent methylation component (LMC) and the proportion of cell types within a
sample (Pearson’s correlation test with Benjamini-Hochberg multiple testing correction, * : q-value < 0.05). B) Proportion
of LMCs 1 and 3 were significantly associated with tumour type (two-sided t-test, * : p-value < 0.05, ** : p-value < 0.01,
*** : p-value < 0.001, n = 119 biologically independent samples). LF2 and LMC1: p = 9.37 × 10−21; LF2 and LMC3:
p = 2.25 × 10−64; LF3 and LMC2: p = 9.82 × 10−59. Boxplots represent the median and interquantile range and whiskers
the maximum and minimum values, excluding outliers. C) Correlation between LMCs 1 and 3 and MOFA’s Morphology
factor (left), and LMC2 and MOFA’s Adaptive-response factor (two-sided Pearson correlation test). The gray bands corre-
spond to 95% confidence intervals. MME: epithelioid; MMB: biphasic; MMS: sarcomatoid.
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Figure S3. Association between survival and MOFA latent factors in the MESOMICS cohort. A) Forest plot of the sur-
vival analysis based on the ten MOFA latent factors (LFs), using a Cox proportional hazards model with LFs as continuous
explanatory variables for (A) all 120 MESOMICS and (B) MME only samples (n = 79). The black square represents esti-
mated hazard ratios and whiskers represent the 95% confidence intervals. Adjusted Wald test p-values are shown on the
right. See corresponding data in Supplementary Table 15. C) Pearson correlation coefficients between factors. D) Linear re-
gression test significance (q-value) between LFs (row) and each technical variable (column).
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Figure S7. MOFA of MPM cell lines. A) Overview of the omic data sets integrated into MOFA (design follows that of
Figure S1A). B) Association between MOFA cell lines morphological factor and the previously proposed molecular clas-
sifications. C-D) Association between Ploidy and ploidy factor, and between CIMP index and CIMP factor, respectively.
E) Correspondance between MOFA cell lines LFs and the MESOMICS MOFA LFs from Figure 1. F) Correlations between
drug responses (IC50 in µM) and MOFA LFs of cell lines. Significant associations are annotated by black point border. G)
Distribution of drug response weights from the Drugs data set, with drugs for which the response is significantly corre-
lated with the given LF annotated in black. Targeted pathways are represented in (F) by a color bar (left), and in (G) by
point colors. H) Correlations between representative drug responses significantly correlated with MOFA LFs from cell
lines (left: negative correlations, right: positive associations). In (B) top and (I), p-values of an ANOVA is presented. In
other (B) plots, (C), (D), (F), and (H), Pearson correlation coefficients and the associated p-values are displayed. I) Rela-
tionship between acinar phenotype and BAP1 expression measured by IHC. Sample sizes (n) and cohort of origin (Iorio or
de Reyniès) are mentioned in each scatter plot. 8
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Figure S4. Overview of the MPM cell lines dataset for integration with MOFA. A) Overview of the omic data sets inte-
grated into MOFA (design follows that of Figure S1). B) Association between MOFA cell lines morphological factor and
the previously proposed molecular classifications. C-D) Association between ploidy and Ploidy factor, and between CpG
island methylator phenotype (CIMP) index and CIMP factor, respectively. E) Correspondance between MOFA cell lines
LFs and the MESOMICS MOFA LFs from Figure 1. Sample sizes (n) and cohort of origin (Iorio or de Reyniès) are men-
tioned in each scatter plot. Pearson correlation coefficients and the associated two-sided p-values are displayed in B,C and
D, and gray bands correspond to 95% confidence intervals. The p-values in B top panel corresponds to an ANOVA F-test
is presented. DNA Alt: rearrangements and mutations; Minor CN: minor segmental copy number; Total CN: total seg-
mental copy number; MethEnh: DNA methylation level at enhancer regions; MethBod: DNA methylation level at body
regions; MethPro: DNA methylation level at promoter regions; RNA: gene expression level.
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Figure S5. Comparison of the best Pareto fit in (A) morphological factor (LF2) and adaptive-response factor (LF3) space
and (B) ploidy factor (LF1) and CIMP factor (LF4) space. The scatter plots represent sample positions along each factor
and coloured vertices the position of the archetype defined by the ParetoTI algorithm in each space. p-values correspond
to one-sided permutation tests on the t-ratio statistic. Green, orange, and red dots represent MME, MMB, and MMS sam-
ples respectively.
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Figure S6. Copy Number profile for major MPM cohorts. Highly-consistent copy number variant (CNV) profiles across
A) MESOMICS (called with purple from WGS data), B) BUENO (called with facets from WES data), and C) TCGA (called
with ABSOLUTE from SNP6.0 arrays) MPM cohorts. Note that facets does not cover the Y chromosome and the TCGA
study did not report sex chromosome CNVs.
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Figure S7. Extrachromosomal DNA (ecDNA) predictions for MESOMICS cohort. Amplicon Architect predicted a total
of 6 posititive ecDNA samples. For each amplicon, we display the name of the sample and the identifier of the amplicon
at the top. The x-axis represents the set of amplicon intervals, with vertical lines indicating break points (thin dotted line
for intra-chromosomal breaks, thick dashed line for inter-chromosomal breaks), with left and right breakpoint positions
indicated by the ticks. The y-axis represents both a histogram of window-based depth of coverage across (grey, left scale)
and the copy number estimate of these segments (black horizontal segments, right scale). Discordant read pair clusters are
represented as colored arcs, with color representing the orientation of the reads. Red: length discordant in expected orien-
tation (forward-reverse); brown: inverted read pairs (reverse-forward); teal: both reads map to forward strand; magenta:
both reads map to the reverse strand. Vertical blue lines indicate connections to source vertex. The bottom panel represent
oncogene positions if any overlap with the segments.
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Figure S3. Detailed genomic profiles. A) Highly-consistent CNV profiles across MPM cohorts. B) Amplicon Architect
ecDNA predictions. C) Characterization and classification of clustered point mutations of one sample with co-occurrence
of kataegis and ecDNA (MESO_019_T). D) Chromothripsis analysis combining Structural Variants and Copy Number
Variants. E) MPM tumors with chromothripsis tend to have more mRNA fusions per structural variant. F) Association
between clustered SV signature, SV load, and chromothripsis (Pearson correlation R = 0.38, p-value=3.658e-05). G) Tumor
Mutational Burden of the 10 Single Nucleotide Variant Signatures detected in the MESOMICS cohort.

4

Figure S8. Example of co-occurrence of kataegis and ecDNA. Characterization and classification of clustered point muta-
tions of one sample with co-occurrence of kataegis and ecDNA (MESO_019_T).

29



Figure S9. Chromothripsis analysis of MESOMICS cohort. Chromothripsis analysis combining Structural Variants (SVs)
and Copy Number Variants (CNVs) detected a total of 23 positive samples, ordered from least number of CNs and SVs
(top left) to most CNs and SVs (bottom right).
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Figure S10. Chromothripsis, mRNA fusions, and clustered SV signature. A) MPM tumors with chromothripsis tend
to have more mRNA fusions per structural variant. The p-value corresponds to an ANOVA F-test of log2(SV count +1)
as a function of the log2(mRNA-fusion count +1) and the presence of chromothripsis across all n = 115 tumors of the
MESOMICS cohort. Gray bands correspond to 95% confidence intervals. B) Association between clustered SV signature
and SV load. The p-value corresponds to an ANOVA F-test of log2(SV count +1) as a function of the presence of the clus-
tered SV signature across all 115 samples. Boxplots represent the median and interquantile range and whiskers the max-
imum and minimum values, excluding outliers. C) Association between clustered SV signature and chromothripsis. The
p-value corresponds to a two-sided Fisher’s exact test of the presence of the clustered SV signature and the presence of
chromithripsis.
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Figure S11. Overview of homologous recombination-deficiency (HRD) samples predicted by CHORD. The upper
panel displays the probability for BRCA1 and BRCA2 HRD types. The lower panel indicates the proportions of duplica-
tions (DUP), binned by length (1-10kb and 10-100kb) out of all SVs, observed in each positive HRD sample and the pre-
dicted HRD type classes.
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Figure S12. Homologous recombination-deficiency pattern in MPM cell lines and PARP inhibitor response (IC50
in uM). Association between PARP inhibitors (PARPi) sensitivity and the CN signature of homologous recombination-
deficiency (HRD). Point colours in panels (A), (C), (E), (G), and (I) represent samples with an HRD pattern detected, and p-
values correspond to linear regression (two-sided t-tests) between HRD status and PARPi response. Point colours in pan-
els (B), (D), (F), (H), and (J) represent BAP1 and TP53 mutational status.
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Figure S13. Comparative analysis of tumor mutational burden. A) Tumor Mutational Burden (TMB) of Mesothelioma
and TCGA tumors. The number of independent biological samples is specified at the top (e.g., n = 115 for MESO). B)
Comparison of the mutational load between mesothelioma (n = 115) and tumor-types from the Pan Cancer Analysis of
Whole Genome data (25 cohorts from the PCAWG with at least 30 non-excluded samples, n = 2622). Left: median number
of Structural Variants (SVs) as a function of the median number of small variants per tumor type. Right: median percent-
age of the genome affected by amplifications and deletions per tumor type.
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Figure S14. MPM drivers. A) Recurrent genes affected by SVs in the MESOMICS cohort. B) Structural and CNV variants
affecting the coding regions of the RBFOX1 gene. C) IntOGen MPM drivers (based on SNVs and small indels) identified
within each individual MPM cohort (Bueno, TCGA, and MESOMICS) and in the pooled cohort (3-cohorts). The upset plot
represents the intersections between the four sets of drivers.
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Figure S15. Comparative analysis of mRNA fusions per tumor types and mRNA-fusion network for major MPM co-
horts. A) Number of mRNA fusions per tumor type in n = 1454 tumors from the PCAWG consortium. Boxplots represent
the median and interquantile range and whiskers the maximum and minimum values, excluding outliers. B) recurrent
mRNA-fusion network for MESOMICS (n = 109), Bueno (n = 211) and TCGA (n = 73) cohorts.
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Figure S16. Overview of TERT alterations in the MESOMICS samples. A) Oncoplot of the different types of alterations
affecting TERT and its chromosomal arm. B) Impact of TERT amplification on gene expression (in normalized read counts,
nrc, n = 99). C) Impact of WGD on TERT gene expression (n = 105). In (B)-(C), boxplots represent the median and in-
terquantile range and whiskers the maximum and minimum values, excluding outliers, and p-values correspond to two-
sided t-tests.
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Figure S5. Detailed impact of genomic alterations on molecular profiles of MPM. A) Overview of TERT alterations in
the MESOMICS samples. Left: oncoplot of the different types of alterations affecting TERT and its chromosomal arm.
Right: impact of TERT amplification on gene expression (in normalized read counts, nrc). B) Schematic representation of
mesothelioma driver ERG functions. Histone methyltransferases KMT2D, SETDB1, EZH2 and SETD2 methylate histone
positions H3K4, H3K9, H3K27 and H3K36 respectively (Me), DNA methyltransferase DNMT3B maintains DNA methy-
lation marks (Me), BAP1 deubiquitinates H2AK119 (Ub), NCOR1 and NCOR2 bind to nuclear receptors (NR) as part of
corepressor complexes and recruit histone deacetylase HDAC3, and PBRM1 binds acetylated histone tails (Ac) as part of
the PBAF chromatin remodelling complex (created with BioRender). C) top 10 down-regulated genes of WGD+ samples.
D) Comparison of copy gain timing estimates based on CpG to TpG mutations and based on all mutations. Points repre-
sent point estimates for an event and a tumor sample, and segments 95% Bayesian CI. Samples included either underwent
a WGD event (MESO_008 and MESO_063), or a large-scale LOH allowing timing (MESO_048, MESO_093). E) Compari-
son of copy gain timing CI using Bayesian inference or parametric bootstrapping. Points represent the centers of CI, and
segments 95% CI. Samples included correspond to that presented in panel D. F) Timing of copy number gains in muta-
tion time. Points represent tumor sample estimates and segments their 95% CI. G) Analysis of the small variant mutational
burden as a function of age at diagnosis. The line denotes the mean and standard error of a linear regression model with-
out intercept (R2 and best fit equation are mentioned in the plot). H) Clonality of CNVs affecting driver genes from Figure
4. I) Neutral evolution detected from the VAF distribution, and corresponding proportions of small variants belonging
to selected (red), neutral subclones (gray), or clonal (blue, purple, and green) (top), and position of samples in the Pareto
front from Figure 1D. J) Clonality of driver small variant mutations; "early" indicates that the alteration predates the LOH
in the corresponding region. (H)-(I) display 13 high-purity samples where clonal reconstruction was possible (see list in
panel I). 6

Figure S17. Schematic representation of mesothelioma driver epigenetic regulatory gene (ERG) functions. Histone
methyltransferases KMT2D, SETDB1, EZH2 and SETD2 methylate histone positions H3K4, H3K9, H3K27 and H3K36
respectively (Me), DNA methyltransferase DNMT3B maintains DNA methylation marks (Me), BAP1 deubiquitinates
H2AK119 (Ub), NCOR1 and NCOR2 bind to nuclear receptors (NR) as part of corepressor complexes and recruit histone
deacetylase HDAC3, and PBRM1 binds acetylated histone tails (Ac) as part of the PBAF chromatin remodelling complex
(created with BioRender).
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Figure S18. Pathways and top down-regulated genes of whole-genome doubling (WGD)+ samples. A) Pathway enrich-
ment analysis (hypergeometric test) of differentially-expressed genes in WGD compared to non-WGD tumors from the
MESOMICS cohort (106 samples with both WGS and RNA-seq). B) Top 10 down-regulated genes of WGD+ samples of
MESOMICS cohort. C)-D) Replication of (A) and (B) in the TCGA cohort (70 samples with CNV calls from DNA chip and
RNA-seq). Note that no genes/pathways were found to be up-regulated at the q-value threshold of 5%, so the left side of
panel (C) is left empty. In (B) and (D), boxplots represent the median and interquantile range and whiskers the maximum
and minimum values, excluding outliers. E) Same as panel (A), but accounting for multiplicative effects of purity on gene
expression. TPM: Transcripts Per Kilobase Million.
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Figure S19. Relationship between acinar phenotype and BAP1 protein expression measured by immunohistochemistry
(IHC). p-values correspond to an ANOVA F-test (n = 110 biologically independent samples). Boxplots represent the me-
dian and interquantile range and whiskers the maximum and minimum values, excluding outliers.
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Figure S20. Alternative splicing in malignant pleural mesothelioma. The top most variable alternative splicing events
(those which contributed 50% to total variation, n =6,366) within the MESOMICS cohort (n =109) were selected for prin-
cipal components analysis. A) Distribution of the top 6,366 detected alternative splicing events (ASE) by category. B) Sam-
ple distribution along principal components 1-10 calculated from 6,366 ASEs, coloured by tumour type. C)-D) Association
between principal components and MOFA Morphology factor, and (E)-(F) proportion of Acinar Archetype; p-values cor-
respond to Pearson correlation tests. G)-H) Gene Ontology Cellular Component analysis of genes affected by ASEs con-
tributing to principal components 3 (G) and 4 (H).
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Figure S21. Timing of copy number gains in mutation time. A) Comparison of copy gain timing estimates based on
CpG to TpG mutations and based on all mutations. Points represent point estimates for an event and a tumor sample,
and segments 95% Bayesian confidence interval (CI). Samples included either underwent a WGD event (MESO_008 and
MESO_063), or a large-scale loss of heterozygosity (LOH) allowing timing (MESO_048, MESO_093). B) Comparison of
copy gain timing CI using Bayesian inference or parametric bootstrapping. Points represent the centers of CI, and seg-
ments 95% CI. Samples included correspond to that presented in panel D. In (A)-(B), gray bands correspond to 95% con-
fidence intervals C) Timing of copy number gains in mutation time in the MESOMICS cohort compared to the >2500 tu-
mors from the Pan-Cancer Whole-Genome Consortium (PCAWG, Gerstung etal. 2020). Points represent tumor sample
estimates, and p-values the empirical p-values with the timing of event used as test statistic, and using the empirical distri-
bution of timings of similar events in the PCAWG tumors as null distribution. D) Clonality of CNVs affecting driver MPM
genes.
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Figure S22. Patterns of intra-tumor heterogeneity in 13 samples. A) Position of multi-regional samples in MOFA LFs.
Colors represent samples (gray: samples with a single region sequenced; colors: multi-regional samples), segments con-
nect regions from the same tumor. Black bars on the left of each plot represent the empirical 50% and 75% percentiles of
the distribution of pairwise inter-tumor distances, and tumors with an intra-tumor distance in the range [50%, 75%) and
[75%, 100%) are annotated by a † and ††, respectively. Note that samples with missing genomic data are not represented
on Factor 1. B) Venn-Euler diagrams of small variants (top) and SVs (bottom), indicating which alterations are found in
a single or both regions. Driver mutations as highlighted in Figure 4 are mentioned, with numbers corresponding to the
number of such alterations among the 13 samples. C) Joint distribution of variant allele frequencies (VAFs) for the 12
multi-regional samples with WGS data (out of 13). Point colors: density measured by the number of points within a fixed
radius. Damaging alterations in driver genes are represented by red points and text. Dashed lines: expected VAF for clonal
alterations in diploid regions given tumor purity; dotted line: expected VAF for clonal alterations in haploid regions given
tumor purity; solid line: ratio of tumor purities estimated from WGS data.
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Figure S23. Timing of small variants. A) Analysis of the small variant mutational burden as a function of age at diagno-
sis. The line denotes the mean and standard error of a linear regression model without intercept (R2 and best fit equation
are mentioned in the plot). B) Neutral evolution detected from the VAF distribution, and corresponding proportions of
small variants belonging to selected (red), neutral subclones (gray), or clonal (blue, purple, and green) (top), and position
of samples in the Pareto front. C) Clonality of driver small variant mutations; "early" indicates that the alteration predates
the LOH in the corresponding region. B)-(C) display 13 high-purity samples where clonal reconstruction was possible (see
list in panel B).
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Figure S24. Comparison of the number of alterations in gene drivers between T/N matched samples and tumor-only
samples of the epithelioid type (n=77 samples, 38 T-only and 39 T/N). A) Small variants. B) Structural variants. C) Copy
number amplifications. D) Copy number deletions. p-values correspond to Fisher’s exact tests.
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