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Abstract

The coalescent is a powerful statistical framework that allows us to infer past population

dynamics leveraging the ancestral relationships reconstructed from sampled molecular

sequence data. In many biomedical applications, such as in the study of infectious diseases,

cell development, and tumorgenesis, several distinct populations share evolutionary history

and therefore become dependent. The inference of such dependence is a highly important,

yet a challenging problem. With advances in sequencing technologies, we are well posi-

tioned to exploit the wealth of high-resolution biological data for tackling this problem. Here,

we present adaPop, a probabilistic model to estimate past population dynamics of depen-

dent populations and to quantify their degree of dependence. An essential feature of our

approach is the ability to track the time-varying association between the populations while

making minimal assumptions on their functional shapes via Markov random field priors. We

provide nonparametric estimators, extensions of our base model that integrate multiple data

sources, and fast scalable inference algorithms. We test our method using simulated data

under various dependent population histories and demonstrate the utility of our model in

shedding light on evolutionary histories of different variants of SARS-CoV-2.

Author summary

Genomic data provide information about evolutionary dynamics—such as an evolving

epidemic and tumorgenesis—that is difficult to infer from other source of data. One of the

main computational challenges in inferring past population histories is to jointly model

dependent subpopulations and correctly quantifying their dependencies over time. When

distinct subpopulations have common ancestry in the past and evolve under shared envi-

ronmental pressure, their population dynamics become dependent. In this work, we pro-

pose an efficient inference method for studying dependent population dynamics from

genetic data in the coalescent framework: an approach that considers the stochastic pro-

cess of the “coalescence” of genealogical lineages traveling back in time to explain the sta-

tistical properties of a sample’s genetic variation. We also extend our framework to jointly

model the ancestral and sampling processes incorporating sampling times as an additional
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source of information. We validate our methods via extensive simulations and demon-

strate that our methods provide new insights into the evolutionary dynamics of SARS-

CoV-2 novel variants.

This is a PLOS Computational Biology Methods paper.

Introduction

Bayesian inference of past population sizes from genetic data is an important task in molecular

epidemiology of infectious diseases and other biomedical disciplines [1–4]. While many

computational and methodological advances have been developed in the last 20 years, there

are still many challenges in using these models on real data applications (see [5, 6] for recent

reviews).

One of the important limitations of most current methods is their lack of flexibility in

modeling the dependency of populations’ effective population sizes. Current models typically

assume either single population size dynamics or a structured population undergoing migra-

tion. In particular, when modeling structured populations, these models resort to simplistic

assumptions on the population size dynamics in order to gain computational tractability and

parameter identifiability [7, 8]. However, often there are situations where the population is

neither one large unit nor completely divided into isolated subpopulations. Different subpopu-

lations may share the same environment and partial ancestry some time in the past, and there-

fore their population dynamics are dependent. For example, in the study of infectious diseases,

all variants of a virus may share the same environment and local non-pharmaceutical interven-

tions; hence their population dynamics could be similarly affected by these external interven-

tions. In tumorgenesis, the cancer cell population within an individual undergoes clonal

expansions in the tumor microenvironment, often resulting in a mixture of genotypically and

phenotypically heterogenous cell subpopulations. Identifying and quantifying such expansions

is crucial for timely detection and personalized oncology for cancer [9]. Despite its impor-

tance, to the best of our knowledge, no realistic methods exist for jointly modeling and study-

ing the trajectories of dependent population size trajectories.

In this work, we propose a nonparametric method for inferring dependent past population

dynamics of subpopulations and for estimating the relative difference in their population size

trajectories over time. The proposed method bypasses the problems inherent in modeling

complex dependent population dynamics by a priori modeling the dependency of population

sizes via a nonparametric prior. Our method not only provides a measure of this dependence,

but also increases estimates’ accuracy and generates narrower credible bands. Essentially, this

happens because we can employ more data to estimate the parameter of interest. In addition,

our approach incorporates other types of data informative of the parameter of interest such as

temporal sampling information of molecular sequences.

Our contributions can be summarized as follows.

• We propose a nonparametric Bayesian framework for inferring dependent population

dynamics from genetic data in the coalescent framework. The model makes minimal

assumptions on the functional form of the population trajectories and their dependency.

Despite its flexibility, we prove that model parameters are identifiable.
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• We extend our framework to jointly model the ancestral and sampling processes incorporat-

ing sampling times as an additional source of information. We empirically validate the per-

formance of our methods and show the ability of the sampling-aware methods in reducing

bias and improving estimation.

• We demonstrate the utility of our methods in providing new insights into the evolutionary

dynamics of SARS-CoV-2 novel variants.

Background

Coalescent model

The coalescent [10] is a popular prior model on genealogies. The genealogy is a timed and

rooted binary tree that represents the ancestry of a sample of n individuals from a population.

We assume that g is a discrete ranked and labeled tree topology with n leaves, (nℓ)ℓ=1:m samples

are sequentially collected at m sampling times denoted by s = (sℓ)ℓ=1:m, with s1 = 0, sj−1 < sj for

j = 2, . . ., m, and n ¼
Pm

j¼1
nj is the total number of samples. In the genealogy, pairs of lineages

merge backwards in time into a common ancestor at coalescent times denoted by t = (tn, . . .,

t2) (Fig 1). The rate at which pairs of lineages coalesce depends on the number of lineages and

the effective population size (EPS) denoted by (Ne(t))t � 0 ≔ Ne. Under this model, the density

of a genealogy g = (g, t, s, n) is:

pðg j NeÞ ¼ exp �
Z 1

0

CðtÞ
NeðtÞ

dt
� �

Yn

k¼2

1

NeðtkÞ
; ð1Þ

where C tð Þ ¼
A tð Þ

2

 !

is the coalescent factor—a combinatorial factor of the number of

extant lineages AðtÞ ¼
Pm

i¼1
ni1ðsi < tÞ �

Pn
k¼2

1ðtk < tÞ. The EPS is generally interpreted as

a relative measure of genetic diversity [11].

Fig 1. Example of a genealogy with sequential sampling. s1, . . ., s4 and t8, . . ., t2 indicate sampling times (red dotted

lines) and coalescent times (blue dotted lines), respectively. The time increases backwards in time starting with s1 = t9 =

0 as the present time. TMRCA indicates the time to the most recent common ancestor at the root.

https://doi.org/10.1371/journal.pcbi.1010897.g001
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Bayesian inference of EPS

We start by assuming that a given genealogy is available to us. Bayesian inference of the EPS

then targets

PðNe; τ j gÞ / Pðg j NeÞPðNe j τÞPðτÞ; ð2Þ

where P(Nejτ) is a prior distribution on Ne that depends on a vector of hyperparameters τ.

A common choice for a prior on Ne is to assume an underlying finite-dimensional paramet-

ric structure. In particular, this choice makes the calculation of the integral in Eq (1) computa-

tionally tractable. A popular strategy is to use a regular grid of M + 1 points (ki)1:M+1 and

assume that Ne is well approximated by

NeðtÞ ¼
XMþ1

i¼1

expðyiÞ1ðt 2 ðki; kiþ1ÞÞ; ð3Þ

a piece-wise constant function with M change points [1, 12]. In Eq (3), we model Ne in log-

scale, however this is not strictly necessary. Many approaches place a Gaussian Markov ran-

dom field (GMRF) prior on θ, for example [13–16]. An alternative to the piece-wise constant

assumption is to use Gaussian process priors. However, the posterior distribution becomes

doubly intractable because the likelihood function depends on an infinite-dimensional integral

over Gaussian processes. In [17], the authors augmented the posterior distribution with auxil-

iary variables via thinning of Poisson processes [18] in order to gain tractability.

The advantage of the GP prior is that one does not need to specify a grid. This comes at the

additional computational costs mentioned above. GMRFs priors require selecting a grid; how-

ever, current formulations (e.g., [16]) leave ample flexibility in the choice of the number of

parameters M and grid breakpoints while remaining computationally extremely tractable. This

is the case because neither the grid cell boundaries (ki)1:M+1 nor M depend on the data g = (g, t,

s, n) or the model parameters Ne(t). By increasing M, one effectively enriches the family of

functions supported by the prior, which is the motivation underlying the use of a GP. We refer

to [16] for guidance on the choice of M.

There are exact and approximate algorithms to sample from Eq (2). Standard software

packages [3, 19] employ Markov chain Monte Carlo (MCMC) methods with carefully

designed transition kernels. Recent algorithmic advances employ Hamiltonian Monte Carlo

(HMC). [16] implemented an algorithm to sample from Eq (2) under several Markov random

fields priors on STAN [20], and Lan et al. [21] employed split HMC [22]. Among the approxi-

mate methods, inference can be efficiently done with Integrated Nested Laplace Approxima-

tion (INLA) [23]. In [24], authors use INLA under a GMRF prior on Ne, showing that the

approximate posterior is remarkably similar to that obtained by MCMC-based algorithms.

Preferential sampling

The standard coalescent model implicitly assumes that the sampling times are either fixed or

functionally independent of the underlying population dynamics. This assumption is in stark

contrast with birth-death-sampling models, where one needs to specify a sampling process

along with the evolutionary model [25]. However, in many applications, such as in infectious

diseases, the sampling frequency is often highly correlated with EPS: more samples are

sequenced when the EPS is larger. This situation, known as preferential sampling in spatial sta-

tistics [26], allows us to model sampling frequency information in order to improve inference

about EPS, reducing estimation bias and improving the accuracy of model parameter infer-

ence. A parametric preferential sampling model was first introduced in coalescent inference by

PLOS COMPUTATIONAL BIOLOGY adaPop: Bayesian inference of dependent population dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010897 March 20, 2023 4 / 16

https://doi.org/10.1371/journal.pcbi.1010897


[25] and later extended to the nonparametric setting [27–30]. The probabilistic dependency of

sampling time distribution on population dynamics can be modeled as an inhomogeneous

Poisson point process (iPPP) with a rate λ(t) that depends on EPS. Although in practice, sam-

pling events occur in bulk, we assume that samples arrive at an instantaneous rate within a

time interval. Hence, we approximate the likelihood of sampling events by the counting pro-

cess over a fixed grid.

We adopt the adaptive preferential sampling framework [30] that employs a flexible

approach for modeling the time-varying dependency between Ne(t) and λ(t): λ(t) = z(t)Ne(t),
where both z(t) and Ne(t) are unknown continuous functions with GMRF priors.

Methods

We propose a flexible and scalable framework for modeling the genealogies of two samples

(not necessarily of the same size) from two populations with dependent population size

dynamics. The goals are (i) to estimate the EPSs of the two populations, (ii) to account for the

dependency between them, and (iii) to quantify estimation uncertainty. The implementation

of our methods adaPop is available in the R package adapref (https://github.com/

lorenzocapp/adapref).

Coalescent for dependent population size dynamics

Let gA = (gA, tA, sA, nA) and gB = (gB, tB, sB, nB) be the genealogies of samples collected from

populations A and B respectively, and let NA
e and NB

e denote their corresponding EPSs. Here,

(sA, sB) are the vectors of sampling times, and (nA, nB) are the corresponding vectors of num-

ber of samples collected. Standard coalescent-based inference methodologies ignore any asso-

ciation between the underlying population processes of the two populations when

approximating posterior distributions PðNA
e jg

AÞ and PðNB
e jg

BÞ.

The advantages of directly modeling the dependence are twofold. First, we get a direct mea-

sure of the association that can have a direct interpretation in scientific studies. Second, our

hierarchical model should estimate Ne more accurately because we model Ne as a shared

parameter, hence we borrow information from the two samples, which is a standard advantage

of a hierarchical Bayesian model [31].

We model the association between the two population size trajectories, which can change

over time, with a time-varying parameter linking NA
e and NB

e :

gA j Ne; sA;nA � Coalescent ðNeÞ;

gB j Ne; g; sB;nB � Coalescent ðgNeÞ;

logNe � GMRFðt1Þ;

t1ja; b � Gammaða; bÞ;

log gjt2 � GMRFðt2Þ;

t2ja; b � Gammaða; bÞ:

ð4Þ

Here, γ≔ (γ(t))t � 0 is the time-varying coefficient that describes how the association between

the two population processes changes over time, leading to NA
e ¼ Ne and NB

e ¼ gNe. The inter-

pretation of γ provides information on the association between two populations. For example,

a growing trend in γ signals the existence of an association between two EPSs: NB
e is growing

faster than NA
e . However, it does not necessarily imply a positive association because, for
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example, if NB
e were growing, NA

e could be either growing at a slower rate than NB
e or be

decreasing and still have an increasing γ.

Throughout the section, we employ GMRF priors with precision τ1 and τ2 on Ne and γ;

however, the framework is flexible to any prior distribution. It is possible to go fully nonpara-

metric employing a GP [17], or a different kind of MRFs, for example, the Horseshoe MRFs

[32]. The number of parameters of the two GMRFs tunes how free the dependence is allowed

to vary between the two populations. In the numerical illustrations, we will employ GMRFs

modeling first order dependencies.

Our model in Eq (4) is “asymmetric”, in the sense that the baseline population EPS is multi-

plied by the time-varying coefficient γ to define the EPS of a new population. The choice is

motivated by the actual scientific question we are examining, in which a new population devel-

ops from an existing one.

We will compare our proposal with a simpler parametric model suggested in [5]. Here, the

population dependence is modeled through two time-independent scalar parameters α and β:

NA
e ¼ Ne and NB

e ¼ aðNeÞ
b
: ð5Þ

However, the strict parametric dependence enforced in the model increases the risk of model

misspecification by not allowing changes in the association of the two population processes.

For example, the model support excludes a time shift when NB
e ðtÞ ¼ NA

e ðt þ sÞ for s> 0. A

consequence of this potential model misspecification is the biased estimation of NB
e , α, and β;

we will provide numerical proofs of this claim in Results section.

Preferential sampling and dependent population size dynamics

A common approach for studying the relative growth between two population dynamics is to

model how the sampling frequency of molecular sequences changes over time in the two popu-

lations. This is frequently done by fitting logistic growth models to the sampling dates only

[33, 34]. The probabilistic models discussed in the previous section take a different stance and

employ molecular data to reconstruct the genealogies which in turn are used to infer the popu-

lation processes jointly. Here, we extend the probabilistic models, either model Eqs (4) or (5),

and model the genealogies jointly with the observed sampling frequencies from both samples

as follows:

sAjz � iPPPðzNA
e Þ;

sBjz � iPPPðzNB
e Þ;

log z � GMRFðt3Þ;

t3ja; b � Gammaða; bÞ:

ð6Þ

Eq (6) builds on the preferential sampling framework described in Background section: the

sampling process is an iPPP whose rate is a function of both the EPS and a time-varying

parameter z. Here, the sampling process of populations A and B will have distinct rates, l
A
¼

zNA
e and l

B
¼ zNB

e . Although we assumed a shared z function, our implementation considers

the possibility of one z function per population. We emphasize that the model is flexible to any

choice of prior distributions on z.
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Inference

We start describing the inference procedure for the parameters of the model in Eq (4). We

employ the same discretization described in Background section: given a regular grid (ki)1:M+1,

we assume that Ne is governed by parameters θ through the map given in Eq (3); γ is governed

by parameters ξ = (ξi)i = 1:M0 such that γ(t) = exp ξi for t 2 (ki, ki+1]. Let τ be the vector of preci-

sion hyperparameters of the GMRFs. Following [24], we use INLA for obtaining marginal pos-

terior medians and marginal 95% Bayesian credible intervals (BCI).

INLA does not approximate the full posterior P(ξ, θ, τjgA, gB); rather, it approximates the

posterior marginals P(τjgA, gB), (P(θijgA, gB))1:M, and (P(ξijgA, gB))1:M. The first step consists

in computing

bPðτjgA; gBÞ /
Pðξ; θ; τ; gA; gBÞ

cPGðξ; θjτ; gA; gBÞ

�
�
�
� ξ ¼ ξ�ðτÞ;

θ ¼ θ�ðτÞ

;

where the denominator is the Gaussian approximation to P(ξ, θjτ, gA, gB) obtained from a

Taylor expansion around its modes θ�(τ) and ξ�(τ) (the first Laplace approximation). The sec-

ond step approximates the marginal posteriors of P(θijgA, gB) and P(ξijgA, gB). For example P
(θijgA, gB) is approximated by

bPðyijτ; gA; gBÞ /
Pðξ; θ; τ; gA; gBÞ

dPGGðθ� i; ξjτ; gA; gBÞ

�
�
�
� θ� i ¼ θ�

� i;

ξ ¼ ξ�;

;

where the denominator is a further Gaussian approximation of the corresponding conditional

distribution. Now the Taylor expansion is centered at (θ−i, ξ) = EG[θ−i, ξjτ, gA, gB], where the

expected value is taken w.r.t.cPGðθ; ξjτ; gA; gBÞ. The subscript GG highlights the fact that two

Gaussian approximations are employed to define PGG. The last step involves integrating out

the hyperparameters from bPðyijτ; gA; gBÞ. This can be easily accomplished using bPðτjgA; gBÞ

(the nested Laplace approximation step).

Identifiability

Parameter identifiability is an essential property of models used in statistical learning. Roughly

speaking, it refers to the theoretical possibility of uniquely estimating a parameter vector if an

infinite amount of data is available [35–37]. Note that this is a property of the generative

model, not of the estimator used.

For example, if Y� Poisson(λ1λ2), then for a pair ðl
0

1
; l
0

2
Þ, any combination 1

c l
0

1
; cl0

2

� �
with

c> 0 will be observationally equivalent. The multiplication of two parameters is a feature often

leading to unidentifiability. Despite the fact that the models described in Eqs (4) and (5)

include a product of parameters, we show that identifiability is not lost.

Since the parameters of models in Eqs (4) and (5) have a scientific interpretation, a lack of

identifiability could hinder the validity of the scientific insights gained from using our method-

ology. There is a large literature showing that many models in evolutionary biology and ecol-

ogy are not identifiable [5, 38]. In the coalescent literature, [39] shows that Ne is identifiable in

the neutral and structured case. Our proposal does not fall in these two categories and a new

result is required. Under the assumption that Ne and γ are piecewise-constant, i.e. Ne = (Ne, i)1:

M and γ = (γi)1:M, we prove that the models introduced in this section possess this important

property.

PLOS COMPUTATIONAL BIOLOGY adaPop: Bayesian inference of dependent population dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010897 March 20, 2023 7 / 16

https://doi.org/10.1371/journal.pcbi.1010897


Proposition 1 (Identifiability of the nonparametric model, Eq (4)). Let gA be distributed as
a coalescent with EPS (Ne, i)1:M, and gB as a coalescent with EPS (γiNe, i)1:M, M� 1, then the vec-
tor (Ne,1, . . ., Ne, M, γ1, . . ., γM) is identifiable.

Proposition 2 (Identifiability of the parametric model, Eq (5)). Let gA be distributed as a
coalescent with EPS (Ne, i)1:M, and gB as a coalescent with EPS ðaNb

e;iÞ1:M, if M = 2, the vector
(Ne,1, . . ., Ne, M, α, β) is identifiable.

Proofs of Propositions 1 and 2 can be found at Section A in S1 Text. [39] proves identifiabil-

ity of Ne for the standard coalescent employing results in [35], which consists in showing that

the expected Fisher information is non-singular. We follow the same template.

Similar to [39], we require for Propositions 1 and 2 to hold at least one coalescent event

within each interval in the grid because at least one data point is needed to have non-zero

Fisher information. This is not specific to our setting; it is also true in the classical case with a

single population [39] when using a skyline estimator [40]. However, this is a theoretical result

that takes into account only the likelihood. Our method is quite different because we employ a

Bayesian formulation with GMRFs priors that add “structure” to the estimation problem in

the sense of enforcing smooth estimates. This is likely to alleviate the requirements of at least

one coalescent event per grid interval as evidenced by the empirical success of GMRF [13–16].

The reason is that the extra information carried in the prior helps addressing the lack of obser-

vations in a given interval.

Extension to multiple populations

Our work is centered on a two-population model because one of our main applications targets

the estimation of a relative advantage of a newly emerging viral variant over an existing vari-

ant. We further assume that the new variant originated from the standing variant. However,

the framework can easily be extended to include multiple populations viewing the two-popula-

tion model as a building block for a general genealogical model with multiple populations. In

this generalization, the EPS of a child population is a function of the EPS of its parental popula-

tion. This gives the two types of hierarchical structures displayed in Fig 2:

• Nested populations. Each effective population is a function of its immediate preceding one

(Fig 2A). The baseline population “A” with EPS NA
e ¼ Ne evolves into a second population

“B” with EPS NB
e ¼ g1Ne, which then in turn evolves into a population “C” with EPS

NC
e ¼ g1g2Ne.

Fig 2. Modeling of multiple subpopulations with dependent population size dynamics. The trees represent large

genealogies of many sequences from three different subpopulations labeled “A”, “B” and “C” at the tips of the trees.

Each lineage represents the subtrees of individuals whose rate of coalescence is dictated by the color of the branch. (A)

Nested populations. The blue branch indicates coalescent events happen at rate that depends on NA
e ¼ Ne, green

branch indicates a coalescent rate that depends on NB
e ¼ g1Ne, and pink branch indicates a coalescent rate that

depends on NC
e ¼ g1g2Ne. (B) Radial populations. The blue branch indicates a coalescent rate that depends on

NA
e ¼ Ne, the green branch indicates a coalescent rate that depends on NB

e ¼ g1Ne, and pink branch indicates a

coalescent rate that depends on NC
e ¼ g2Ne.

https://doi.org/10.1371/journal.pcbi.1010897.g002
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• Radial populations. Multiple populations evolve from the baseline population “A” with EPS

NA
e ¼ Ne (Fig 2B). Then, population “B” will have EPS NB

e ¼ g1Ne, and population “C” with

NC
e ¼ g2Ne.

The hierarchical structure for EPSs of multiple populations can be constructed iteratively as

combinations of the two base structures of Fig 2. This construction maintains parameter iden-

tifiability. The inference framework for the multiple-populations extension still follows the

Inference section: GMRF priors on the base EPS Ne, and the γi parameters and the parameter

inference is performed with INLA approximations. While we expect many evolutionary sce-

narios can be expressed in terms of the above hierarchical structures, if the underlying evolu-

tionary process deviates from our model assumption, the model misspecification will lead to

bias; formal investigation remains subject to further study.

Although Fig 2 may be interpreted as a realization of a multitype birth-death (MTBD)

process [41], our model differs from the approach of MTBD in two important aspects. First,

in modeling different genealogical processes, we assume a coalescent process governed by

EPS, while MTBD assumes a branching process governed by birth, death, and sampling

rates. Second, while both approaches aim to estimate subpopulation rates (EPS in our case,

birth/death in MTBD), MTBD additionally targets the locations of the rate changes, whereas

our model centers on how the rates of different subpopulations are related to each other over

time.

Results

We show the effectiveness of our methodology by applying it to synthetic and real-world data.

In the synthetic data section, we offer evidence of its numerical accuracy. The real-data section

illustrates the scientific insights that can be obtained by applying our methodology to SARS-

CoV-2 data. The code to reproduce the simulation study is available at https://github.com/

lorenzocapp/adapop_numexp.

Synthetic data

Fig 3 depicts six pairs of ðNA
e ;N

B
e Þ used to simulate data. The trajectories mimic realistic sce-

narios typically encountered in applications, such as constant population sizes and exponential

growths. The scenarios include several types of dependence between NA
e and NB

e , ranging from

perfect association (Scenario 6) to no association (Scenario 2). We simulated 100 datasets per

each scenario. For a fixed pair of EPSs, we sampled (sA, sB), (nA, nB), and (tA, tB) with nA = nB

= 200. Specifics of ðNA
e ;N

B
e Þ and the data-generating mechanism can be found at Sections B–D

in S1 Text.

We refer our hierarchical approach with and without preferential sampling as “adaPop”

(Eq 4) and “adaPop+Pref” (Eq 6), respectively, and compare them to the parametric method

(Eq 5) referred here as “parPop”. We also include a neutral estimator “noPop”, which ignores

the association between populations and estimates NA
e and NB

e independently. We compare

how accurately the four methodologies estimate γ, NA
e and NB

e . Note that, while parPop and

noPop do not approximate γ, the posterior P(γjsA, sB, tA, tB) can be empirically approximated

by taking samples from PðNA
e ;N

B
e js

A; sB; tA; tBÞ and summarizing g ¼ NB
e =N

A
e . Let f be either γ,

NA
e or NB

e . We evaluate the performance of the methods using three metrics (listed below) com-

puted on a regular grid of time points (vi)1:K. Here, the grid is defined with K = 100 on the

interval [0, 0.6 TMRCA], where TMRCA denotes the time to the most recent common ancestor at

the root.
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• DEV ¼
XK

i¼1

jbf ðviÞ � f ðviÞj
f ðviÞ

, where bf ðviÞ is the posterior median of f at time vi. It is a measure

of bias.

• RWD ¼
XK

i¼1

jf̂ 97:5ðviÞ � f̂ 2:5ðviÞj
f ðviÞ

, where f̂ 97:5ðviÞ and f̂ 2:5ðviÞ are respectively the 97.5% and

2.5% quantiles of the posterior distribution of f(vi). It describes the average width of the cred-

ible region.

• ENV ¼
XK

i¼1

1ff̂ 2:5ðviÞ�f ðviÞ�f̂ 97:5ðviÞg
. It is a measure of 95% credible intervals coverage.

Table 1 reports the average value of each statistic pooling together all datasets, all scenarios,

and all grid points. Hence, each entry should represent the average performance of a method

across the variety of challenging scenarios considered. We also average the performance met-

rics of NA
e and NB

e . A more granular view of the performance of each method by scenario is

given in Table A in S1 Text.

Fig 3. Population trajectories for synthetic data.

https://doi.org/10.1371/journal.pcbi.1010897.g003

Table 1. Summary statistics of posterior inference of γ, NA
e , and NB

e . Each entry is computed as the mean of the performance metrics considered across all synthetic data-

sets: six possible scenarios for ðNA
e ;NB

e Þ, and 100 datasets per a scenario. The metrics for NA
e and NB

e have also been averaged. Numbers in parentheses are the standard devi-

ation of each estimate. The numbers in bold indicate the method(s) with the best performance (and within 10% of the best) for each performance metric: the highest for

ENV and the lowest for DEV and RWD.

METHOD ENVg DEVg RWDg ENVNe DEVNe RWDNe

adaPop+Pref 0.89 0.34 4.41 0.93 0.3 3.15

(0.12) (0.21) (15.71) (0.08) (0.27) (13.58)

adaPop 0.93 0.36 6.96 0.95 0.39 5.65

(0.1) (0.24) (26.92) (0.06) (0.37) (25.04)

noPop 0.94 0.52 90.67 0.95 0.34 6.27

(0.09) (0.43) (1144.69) (0.07) (0.28) (24.08)

parPop 0.74 0.55 29.38 0.77 1.03 27.53

(0.28) (0.41) (305.45) (0.29) (6.81) (673.73)

https://doi.org/10.1371/journal.pcbi.1010897.t001

PLOS COMPUTATIONAL BIOLOGY adaPop: Bayesian inference of dependent population dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010897 March 20, 2023 10 / 16

https://doi.org/10.1371/journal.pcbi.1010897.g003
https://doi.org/10.1371/journal.pcbi.1010897.t001
https://doi.org/10.1371/journal.pcbi.1010897


adaPop+Pref stands out as the best performing method, exhibiting the lowest bias (DEV)

and the narrowest credible regions (RWD). The coverage (ENV) is slightly worse than noPop;

however, noPop achieves the slightly higher coverage with much wider credible regions. ada-

Pop has a very similar performance to adaPop+Pref.

Sampling times were sampled at uniform and not proportionally to NA
e and NB

e . This is the

case where preferential sampling is less informative. Remarkably, adaPop+Pref still has nar-

rower credible regions than adaPop. The reason is that the time-varying coefficient z is able to

capture a variety of sampling protocols, including uniform sampling. We interpret this as an

empirical evidence of the adaptivity of the model.

adaPop has narrower credible regions than the competing methodologies (noPop, parPop).

This is an empirical proof of the “borrowing of information” of a hierarchical model. Notably,

this property holds consistently across scenarios. adaPop’s higher DEVNe is mostly attributed

to poorer performance in estimating NB
e in Scenario 2 (see Table A in S1 Text). If we exclude

Scenario 2, adaPop is superior to noPop and parPop across all metrics. Similarly, parPop is

very competitive in the scenarios where the model is correctly specified (Scenarios 1, 2, and 6).

The average performance deteriorates due to poorer performance in the remaining scenarios.

Lastly, an essential feature of adaPop and adaPop+Pref is that they are the most stable meth-

odologies. This can be seen from the standard deviations of the statistics in the parentheses.

Table A in S1 Text includes further analyses where the robustness and performance of the

models are evaluated.

Real data

Since its introduction, SARS-CoV-2 has undergone rapid evolution resulting in novel variants,

some of which possess transmissibility, pathogenicity, or antigenicity advantages over the pre-

existing resident variants [42, 43]. A variant of recent interest is the delta variant (Pango line-

age B.1.617.2 and AY lineages [44]). We compare this variant to other SARS-CoV-2 variants in

two countries, South Korea and Italy.

We analyzed high-coverage complete sequences publicly available in GISAID [45] collected

from South Korea and Italy during 2021-03-01 to 2021-09-30. For each country, we subsam-

pled two sets of 150 sequences: one with the delta variant and the other without the delta vari-

ant. The details of the sequences used for our analysis can be found at Table B and Fig A in S1

Text. We then estimated the maximum credibility clade (MCC) trees—the tree in the posterior

sample with the maximum sum of the posterior clade probabilities—of samples from each var-

iant group of each country independently with BEAST2 [3]; the further analysis pipeline can

be found at Section E in S1 Text. In our study, we set the population of the delta variant

sequences as population A and of the non-delta variant as population B. Here, we discuss the

results using the parPop and adaPop+Pref models. The additional results with other methods

and further details of the sequence analysis pipeline, together with the inferred MCC trees,

appear in Figs B–F in S1 Text.

The orange-shaded heatmaps in Fig 4 depict the number of samples collected over time of

the two populations in South Korea and Italy (as represented in our sub-sampled data sets).

The observed pattern is consistent across the two countries: delta viral samples were predomi-

nantly collected in the summer of 2021, while non-delta samples were collected in the spring

and early summer of 2021. This is consistent with the general observation of rapid spread of

the delta variant that has progressively replaced the preexisting non-delta variants (such as

alpha) since its introduction [46, 47].

Fig 4B, 4C, 4F and 4G depict the estimated posterior distribution of EPS of the two viral

populations in the two countries obtained with adaPref+Pop (noPop estimates are qualitatively
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similar, see Fig D in S1 Text). In both countries, the delta population has experienced pro-

longed growth since its inception and halted its growth in the last month. On the other hand,

the non-delta population EPS grew until approximately the end of May (the growth looks

more pronounced in Italy), then it roughly plateaued.

We next examine the quantification of the dependence between the two populations: β for

parPop and γ for adaPop+Pref. In Fig 4A, the posterior density of β estimated under the par-

Pop model has mean 0.36 with 95% credible interval (0.19, 0.51), well below 1 (red line), sug-

gesting EPS growth is more pronounced among sequences having the delta variant in South

Korea. On the other hand, the posterior density of β has mean 1.62 with credible interval (1.25,

1.95) (Fig 4E) indicating the EPS of the non-delta variant grows faster than the delta variant in

Italy under the parPop model. The result suggests that the growth of the non-delta population

dominated that of the delta population which contradicts the general consensus [46, 47].

Under the adaPop+Pref model, the monotonic decrease in the growth of the non-delta vari-

ant EPS compared to that of the delta variant EPS in South Korea is apparent in γ-trajectory

(Fig 4D); this is consistent with parPop β. However, the γ-trajectory of Italy (Fig 4H) shows

that, compared to the growth of the delta variant EPS, the non-delta variant underwent an ini-

tial phase of faster growth and then transitioned to slower growth around mid-March of 2021.

The inability of the parPop model (Fig 4E) to capture the two-phase population dynamics in

Italy, that are evident in the adaPop+Pref model (Fig 4H), suggests that more flexible

approaches proposed by our work are needed for accommodating the broad range of

β

γ

γ

γ

Fig 4. Posterior inference of SARS-CoV-2 population dynamics in South Korea and Italy. Panels A–D contain results of South Korea, and the panels E–H show

results of Italy with gA=delta and gB=non-delta. The first column shows the β parameter posterior density from the parPop method. The red line indicates the value of β
under the hypothesis that both variants share the same EPS trajectory in the parPop model. The other columns present the results with adaPop+Pref: the second and the

third columns display posterior estimates of EPS of the delta and non-delta variant, respectively, and the last column shows posterior estimates of γ. The solid line

indicates the posterior medians with its surrounding shaded areas representing 95% BCIs. The orange and blue heatmaps describe the sampling and coalescent event

intensity, respectively: the darker the color, the more number of events occurs in a time interval. The y-axis of plots in the columns 2–4 is plotted on a log scale. The

results using other methods can be found in the Figs D–F in S1 Text.

https://doi.org/10.1371/journal.pcbi.1010897.g004
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population dynamics scenarios encountered in real applications. We interpret the discrepancy

between β and γ in this case as the evidence that parPop is not correctly specified.

Discussion

We have developed a coalescent-based Bayesian methodology for inferring dependent popula-

tion size trajectories and quantifying such dependency. We make minimal assumptions on the

functional form of population size trajectories and allow the dependence between the two pop-

ulations to vary over time. We also present a sampling-aware model for leveraging additional

information contained in sampling times for reduced bias and improved inference accuracy.

Although the proposed models have an increased number of parameters, we prove that the

models are identifiable. We have shown that our adaPop+Pref outperforms other methods in

synthetic data with known ground truth and that our adaptive method can detect changes in

population size dynamics that are otherwise undetected with other models. We make this

point more precise in our SARS-CoV-2 analyses.

We have decided to infer parameters via a numerically approximated method that relies on

Laplace approximations (INLA) for computational speed. However, our proposed models can,

in principle, be implemented in any of the MCMC standard approaches. Implementing our

models in an MCMC approach would allow to infer population size trajectories from molecu-

lar sequences and sequencing time information directly and it is a subject of future develop-

ment. This extension would account for uncertainty in the genealogy, an important

component that is missing in the analyses presented.

We see a growing number of applications of the coalescent requiring the modeling of com-

plex demographic histories. In the introduction, we mentioned a few, such as viral epidemiol-

ogy and cancer evolution. There is extensive literature on models incorporating more and

more realistic features, for example, a detailed description of migration histories. We note

however that our proposed model explicitly models the dependency of population trajectories,

providing a more interpretable dependency than in the structured coalescent. The quest for

realism and scientifically meaningful parameters comes at the cost of computational tractabil-

ity and leads, sometimes, to issues of model identifiability. Our work is somewhat motivated

by these problems. Our method is equipped with high performance and accuracy, due to its

scalability, interpretability, and parameter identifiability; such properties are lacking in many

complex models in biology and epidemiology. We see our proposal as a “hybrid approach”

that allows scientists to quantify the relative advantage of one population over another while

still retaining a fairly parsimonious model. Such an approach will be invaluable across many

biomedical disciplines for studying complex time-varying dependent evolutionary dynamics

of populations.

Supporting information

S1 Text. Section A. Proofs of identifiability. Section B. Simulation details. Section C. Grid

construction. Section D. Synthetic data: additional results. Section E. SARS-CoV-2 molec-

ular data analysis. Table A. Summary statistics of posterior inference of γ, NA
e , and NB

e .

Each entry is computed as the mean of the performance metric for a given scenario (100

datasets per scenario). The metrics for NA
e and NB

e have been also averaged. The numbers in

bold indicate the method(s) with the best performance (and within 10% of the best) for each

performance metric: the highest for ENV, the lowest for DEV and RWD. Table B. GISAID

EPI_SET IDs and their corresponding DOIs for sequences used in the real data analysis.

Each EPI_SET dataset contains 150 sequences. Note that EPI_ISL_402124 (hCoV-19/Wuhan/

WIV04/2019, the official reference sequence employed by GISAID) is automatically included
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in the DOI EPI_SET web viewer generated by GISAID in addition to the 150 sequences per

each dataset below. Fig A. Collection date distributions of available high-coverage complete

sequences in GISAID. (A) South Korea. (B) Italy. Purple and green colors indicate sequences

with and without delta variants, respectively. Fig B. MCC trees of delta and non-delta vari-

ants from South Korea. Fig C. MCC trees of delta and non-delta variants from Italy. Fig D.

Posterior EPS trajectories using the noPop method. (A) South Korea, delta EPS. (B) South

Korea, non-delta EPS. (C) Italy, delta EPS. (D) Italy, non-delta EPS. The figure format follows

Fig 4 of the main text. Fig E. Posterior densities of parameters and posterior EPS trajecto-

ries using the parPop method. (A) South Korea, log α. (B) South Korea, β. (C) South Korea,

delta EPS. (D) South Korea, non-delta EPS. (E) Italy, log α. (F) Italy, β. (G) Italy, delta EPS. (H)

Italy, non-delta EPS. The figure format follows Fig 4 of the main text. Fig F. Posterior EPS tra-

jectories and posterior estimates of γ using the adaPop method. (A) South Korea, delta EPS.

(B) South Korea, non-delta EPS. (C) South Korea, γ, (D) Italy, β. (E) Italy, delta EPS. (F) Italy,

γ. The figure format follows Fig 4 of the main text.
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