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1 PROOFS OF THE RESULTS OF SECTION 3.4
We first recall a few preliminary definitions and results that will be used throughout the proofs. The review that follows is based
on Lehmann & Casella (2006) Chapter 2.

Let t be distributed according to density pθθθ with respect to the Lebesgue measure, with θθθ ∈ Θ, where θθθ is a vector of
length s. The Expected Fisher Information (EFI) is defined as I(θθθ) = ||Ii, j(θθθ)||, where

Ii, j(θθθ) = Eθθθ

[
∂ log pθθθ

∂θi

∂ log pθθθ

∂θ j

]
.

I(θθθ) depends on a given parametrization. Suppose that θi = hi(ξ1, . . . ,ξp), for i = 1, . . . ,s and let J denote the Jacobian matrix
J = || ∂θi

∂ξ j
||. Then the EFI I(ξξξ ) can be written as a function of I(θθθ) as follows

I(ξξξ ) = J I(θθθ(ξξξ ))JT . (S1)

If pθθθ belongs to an exponential family, then θθθ is identifiable if I(θθθ) is nonsingular in a convex set containing Θ (Rothenberg
(1971) Theorem 3). In Section 3 of the main text, we assumed that the EPS is piecewise-constant, Ne = (Ne,i)1:M , with the
boundary points described by a regular grid (ki)1:M+1. Under the coalescent process, we have that g is distributed according to
the coalescent density pNe given in Eq. (1) in the main text, and pNe belongs to the exponential family; i.e., to show that Ne is
identifiable, we need to show that I(Ne) is nonsingular.

In the case of a single population, one can show that I(Ne) is a diagonal matrix with diagonal entries (c1N−2
e,1 , . . . ,cMN−2

e,M),
where ci denotes the number of coalescent times in the interval [ki,ki+1). The determinant |I(Ne)| is non-zero if and only if
ci > 0 for all i = 1 . . . ,M. If this is the case, then Ne is identifiable since I(Ne) is full-rank, hence non-singular. The identifiability
of Ne is also studied by Parag & Pybus (2019).

The simplest model of two populations is to treat them independently: gA is distributed to a coalescent with EPS
NA

e = (NA
e,i)1:M and gB is distributed to a coalescent with EPS NB

e = (NB
e,i)1:M . For the same argument described above, (NA

e ,N
B
e )

are identifiabile, being I(NA
e ,N

B
e ) a 2M×2M diagonal matrix with entries (cA

1 NA,−2
e,1 ,cB

1 NB,−2
e,1 , . . . ,cA

MNA,−2
e,M ,cB

MNB,−2
e,M ).

The hierarchical models described in Eqs. (4) and (5) can be seen as reparametrization of the independent model. To prove
Propositions 1 and 2, we will use I(NA

e ,N
B
e ) and apply Eq. (S1). The two models define two different reparametrizations ξξξ and

J will be different.

1.1 Proof of Proposition 1
In model Eq. (4), we have that NA

e = (Ne,i)1:M and NB
e = (γiNe,i)1:M; hence, ξξξ = (Ne,1, . . . ,Ne,M,γ1, . . . ,γM) and J is a 2M×2M

matrix. In this case, the Jacobian matrix is

J =


1 1 0 0 . . .
0 1 0 0 . . .
0 0 1 1 . . .
0 0 0 1 . . .
...

...
...

...
. . .

 ,



hence it is a block diagonal matrix. The block diagonal structure follows from the independence of consecutive grid intervals.
Its determinant is 1 being the product of the determinants of the subsquare 2×2 matrices along the diagonal. The result follows,
because the determinant of the product of square matrices is the product of the determinants, i.e., |I(Ne,γ)| ≠ 0 and I(Ne,γ) is
nonsingular.

1.2 Proof of Proposition 2

In model Eq. (5), we have that NA
e = (Ne,i)1:M and NB

e = (αNβ

e,i)1:M; hence, ξξξ = (Ne,1, . . . ,Ne,M,α,β ) and J is a (M+2)×2M
matrix. We focus on the case M = 2. In this case, we have that the Jacobian matrix is

J =


1 αβNβ−1

e,1 0 0

0 0 1 αβNβ−1
e,2

0 Nβ

e,1 0 Nβ

e,2

0 αNβ

e,1 logNe,1 0 αNβ

e,2 logNe,2

 .

The determinant of J is equal to Nβ

e,2αNβ

e,1 logNe,1 −Nβ

e,1αNβ

e,2 logNe,2. This is different than zero because Ne,1 ̸= Ne,2. Hence,
|J| is non-zero. The result follows, because the determinant of the product of square matrices is the product of the determinants,
i.e. |I(Ne,α,β )| ̸= 0 and I(Ne,α,β ) is nonsingular.

2 SIMULATIONS DETAILS

Details of the trajectories: Here, we describe NA
e and NB

e for the six scenarios considered:

• Scenario 1:

NA
e (t) =

{
10 if t ∈ [0,0.35),
10×1014 exp(−92.1034t) if t ∈ [0.1,0.3),
0.1 if t ∈ [0.4,∞),

NB
e (t) =

1
2
(NA

e (t))
3
2 . (S2)

• Scenario 2:

NA
e (t) =

{
10 if t ∈ [0,0.35),
10×1014 exp(−92.1034t) if t ∈ [0.1,0.3),
0.1 if t ∈ [0.4,∞),

NB
e (t) =

1
2

for all t. (S3)

• Scenario 3:

NA
e (t) =

{
10 if t ∈ [0,0.35),
10×1014 exp(−92.1034t) if t ∈ [0.1,0.3),
0.1 if t ∈ [0.4,∞),

NB
e (t) = NA

e (t +0.1). (S4)

• Scenario 4:

NA
e (t) =

{
10 if t ∈ [0,0.35),
10×1014 exp(−92.1034t) if t ∈ [0.1,0.3),
0.1 if t ∈ [0.4,∞),

NB
e (t) = NA

e (t +0.3). (S5)

• Scenario 5:

NA
e (t) =

{
exp(13.04t −4.61) if t ∈ [0,0.3),
0.5 if t ∈ [0.3,∞), NB

e (t) =
{

4exp(−12.29t) if t ∈ [0,0.3),
0.1 if t ∈ [0.3,∞). (S6)

• Scenario 6:

NA
e (t) =

{
10 if t ∈ [0,0.35),
10×1014 exp(−92.1034t) if t ∈ [0.1,0.3),
0.1 if t ∈ [0.4,∞),

NB
e (t) = NA

e (t) (S7)
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Simulation strategy: We fix n = 200. For a given scenario, we set n1 = 2, s1 = 0, and simulate n−n1 sampling locations
from a Poisson process with rate 500. This defines s and n = (2,1, . . . ,1). We stress that the sampling is uniform, it does not
depend neither on NA

e nor NB
e , and the rate is chosen such that the expected number of samples in the interval [0,0.4] is equal to

n. The interval [0,0.4] is of particular interest because it is where all the change points in NA
e and NB

e are concentrated. We
repeat this step twice in order to define two pairs (n,s), which we label (nA,sA) and (nB,sB).

Conditionally on nA, sA, and NA
e , we sample coalescent times tA according to Algorithm 3 in Palacios & Minin (2013). We

repeat the same step for tB. We sample from the inhomogeneous Poisson processes using the Lewis-Shedler thinning algorithm
(Lewis & Shedler, 1979). Note that there is no need to sample tree topologies because the vector t is a sufficient statistic for
Ne(t).

3 GRID CONSTRUCTION
We rely on a discretization of Ne and γ defined by a regular grid (ki)1:M+1. A guideline on how to choose M can be found in
Faulkner et al. (2020). Throughout Section 3 of the main text, we assumed that sA

1 and sB
1 are equal to zero. In applications, this

assumption might not hold. For example, the SARS-CoV-2 data sets in Section 4.2 where there are no samples of non-delta
variant at time 0 (see heatmaps Figure 4).

Special care is required in this case. A condition for the identifiability of (Ne,1, . . . ,Ne,M,γ1, . . . ,γM) is that there should be
at least one coalescent event per grid interval for both populations. Trivially, this condition will fail if one of the two populations
does not have samples at the beginning of the grid.

A solution to this problem is the following. Use as population A, the population that has samples collected at time zero, and
as B the other population. Then, define the EPS of population B as NB

e = (γiNe,i)L:M , where L := maxi=1,...,M{ki ≤ sB
1}; i.e.,

truncate the effective population size in the intervals where there are no observations from B. The likelihood of B does not
contribute to (Ne,1, . . . ,Ne,L−1). In the analysis of SARS-CoV-2 data, we set the delta sample as population A, the non-delta as
population B. Figure 4 depicts the truncation of γ: there are no estimates for γ in the last few weeks.

4 SYNTHETIC DATA: ADDITIONAL RESULTS
Table S1 reports the average value of each statistic pooling together all scenarios and all grid points. We also average the
performance metrics of NA

e and NB
e . Table S1 differs from the table in the main manuscript because here, we are splitting the

performance of each method by scenario.
adaPop+Pref stands out again as the best performing method. It only struggles to recover NB

e in Scenario 2: neither adaPop
nor adaPop+Pref can recover the flat EPS as well as noPop and parPop. parPop is the best performing method in this case. The
reason is that by simply setting β = 0, one can recover the flat NB

e .
parPop is the method with the most polarized performance. When the parametric model is correctly specified (Scenarios 1, 2,

and 6), it is among the best-performing methodologies. The accuracy deteriorates substantially when the model is misspecified
(Scenarios 3, 4, and 5).

adaPop is often the second best performing method after adaPop+Pref. Surprisingly, it has a performance almost identical
to parPop when parPop is correctly specified. This is surprising given that adaPop is more heavily parameterized. When parPop
is misspecified, adaPop seems to adapt to the varying dependency and exhibit good performance.

5 SARS-CoV-2 MOLECULAR DATA ANALYSIS
For each country, we randomly sampled 150 sequences with delta variant and 150 sequences without delta variants collected
in the period of 2021-03-01 to 2021-09-30 from publicly available high-coverage complete sequences in GISAID (Shu &
McCauley, 2017). The date was chosen based on the availability of the first identified delta variants in each country (Figure S1).
The resulting sampled sequence accession IDs can be found at the end of the Supplementary Materials. The classification of the
delta variant group was based on the B.1.617.2 and AY lineages under the Pango lineage designation system (O’Toole et al.,
2021). The sequences were aligned to the reference sequence EPI_ISL_402124 (Okada et al., 2020) with MAFFT (Katoh &
Standley, 2013) by GISAID. From the multiple sequence alignment, we filtered out sites with more than 20% missing values in
each country.

We analyzed sequences of each variant group of each country independently with BEAST2 (Bouckaert et al., 2019)
using the Extended Bayesian Skyline prior on Ne(t) (Heled & Drummond, 2008), the HKY mutation model with empirically
estimated base frequencies (Hasegawa et al., 1985), and the strict clock model with the rate constrained to [8×10−4,1×10−3]
substitutions per site per year (van Dorp et al., 2020). The chain was ran for 20×106 iterations, thinning every 1000 and with
20% burnin. The resulting maximum credibility clade (MCC) trees can be found in Figures S2 and S3.

With the inferred MCC trees, we examined the quantification of the dependence between the two variants in each country
with four methods we introduced: noPop, parPop, adaPop, and adaPop+Pref (Section 4.1 in the main text). Results using the
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noPop, parPop, and adaPop methods are shown in Figures S4, S5, and S6, respectively, and the results with the adaPop+Pref
method is shown in Figure 4 of the main text.

Table S1. Summary Statistics of Posterior Inference of γ , NA
e , and NB

e . Each entry is computed as the mean of the
performance metric for a given scenario (100 datasets per scenario). The metrics for NA

e and NB
e have been also averaged. The

numbers in bold indicate the method(s) with the best performance (and within 10% of the best) for each performance metric:
the highest for ENV, the lowest for DEV and RWD.

SCENARIO METHOD ENVγ DEVγ RWDγ ENVNe DEVNe RWDNe

1 adaPop+Pref 1 0.26 2.74 0.98 0.3 2.53
adaPop 1 0.3 4.33 0.98 0.47 6.74
noPop 0.99 0.81 45.85 0.98 0.58 23.71
parPop 1 0.24 9.7 0.97 0.46 7.05

2 adaPop+Pref 0.9 0.42 17.28 0.95 0.47 10.13
adaPop 0.92 0.5 28.63 0.96 0.58 17.19
noPop 0.93 0.62 469.22 0.97 0.28 3.32
parPop 0.92 0.46 153.49 0.96 0.24 2.75

3 adaPop+Pref 0.9 0.35 2.12 0.91 0.27 1.65
adaPop 0.94 0.36 3.2 0.94 0.32 2.67
noPop 0.96 0.39 3.83 0.94 0.29 2.5
parPop 0.4 1.16 1.86 0.52 0.77 2.05

4 adaPop+Pref 0.85 0.34 1.34 0.88 0.28 1.34
adaPop 0.93 0.32 1.68 0.94 0.33 2.13
noPop 0.96 0.34 2.1 0.93 0.26 1.86
parPop 0.64 0.64 1.71 0.5 3.56 149.03

5 adaPop+Pref 0.71 0.52 1.55 0.88 0.27 1.48
adaPop 0.8 0.52 2.07 0.92 0.28 1.81
noPop 0.81 0.51 1.96 0.91 0.27 1.86
parPop 0.52 0.64 1.35 0.73 0.8 1.56

6 adaPop+Pref 1 0.12 1.04 0.96 0.24 1.54
adaPop 1 0.13 1.17 0.96 0.33 3.17
noPop 0.99 0.47 9.14 0.96 0.4 5.66
parPop 1 0.13 3.93 0.95 0.33 3.03
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Figure S1. Collection Date Distributions of Available High-Coverage Complete Sequences in GISAID. (A) South Korea. (B)
Italy. Purple and green colors indicate sequences with and without delta variants, respectively.
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Figure S2. MCC Trees of Delta and Non-Delta Variants from South Korea.
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Figure S3. MCC Trees of Delta and Non-Delta Variants from Italy.
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Figure S4. Posterior EPS Trajectories using the noPop Method. (A) South Korea, delta EPS. (B) South Korea, non-delta EPS.
(C) Italy, delta EPS. (D) Italy, non-delta EPS. The figure format follows Figure 4 of the main text.
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Figure S5. Posterior Densities of Parameters and Posterior EPS Trajectories using the parPop Method. (A) South Korea,
logα . (B) South Korea, β . (C) South Korea, delta EPS. (D) South Korea, non-delta EPS. (E) Italy, logα . (F) Italy, β . (G) Italy,
delta EPS. (H) Italy, non-delta EPS. The figure format follows Figure 4 of the main text.
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Figure S6. Posterior EPS Trajectories and Posterior Estimates of γ using the adaPop Method. (A) South Korea, delta EPS. (B)
South Korea, non-delta EPS. (C) South Korea, γ , (D) Italy, β . (E) Italy, delta EPS. (F) Italy, γ . The figure format follows
Figure 4 of the main text.
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