
nature communications

Article https://doi.org/10.1038/s41467-022-32397-8

Deconvoluting complex correlates of
COVID-19 severity with a multi-omic
pandemic tracking strategy

A list of authors and their affiliations appears at the end of the paper

The SARS-CoV-2 pandemic has differentially impacted populations across race
and ethnicity. A multi-omic approach represents a powerful tool to examine
risk acrossmulti-ancestry genomes. We leverage a pandemic tracking strategy
in which we sequence viral and host genomes and transcriptomes from
nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313
SARS-CoV-2 negative) and integrate them with digital phenotypes from elec-
tronic health records from a diverse catchment area in Northern California.
Genome-wide association disaggregated by admixture mapping reveals novel
COVID-19-severity-associated regions containing previously reported markers
of neurologic, pulmonary and viral disease susceptibility. Phylodynamic
tracking of consensus viral genomes reveals no association with disease
severity or inferred ancestry. Summary data from multiomic investigation
reveals metagenomic and HLA associations with severe COVID-19. The wealth
of data available from residual nasopharyngeal swabs in combination with
clinical data abstracted automatically at scale highlights a powerful strategy
for pandemic tracking, and reveals distinct epidemiologic, genetic, and bio-
logical associations for those at the highest risk.

Two central questions from the COVID-19 pandemic remain unre-
solved: who is at risk of severe disease, and why? Genome-wide-
association-studies (GWAS) from the COVID-19 Host Genetics Initia-
tive and others have identified up to 13 genetic loci associated with
COVID-19 infection, hospitalization and critical illness1–3. Among
these loci are the ABO blood type locus, a variant found at high
frequency in Pacific Islander populations4, and a chromosome 3
haplotype that is shared with the Neanderthal genome and over-
represented in individuals of European ancestry, all suggesting that
genetic ancestry can play a role, albeit small, in susceptibility and
severity in SARS-CoV-2 infection5. At the same time, epidemiologic
studies have shown that comorbidities, sex, and race/ethnicity are
strongly associated with infection prevalence and disease severity6–9.
For example, several groups have reported higher incidence of
COVID-19 and higher disease severity among Hispanic/Latino and
African American racial and ethnic groups6,8. Because the social
constructs of race and ethnicity can covary with overall genetic

ancestry (e.g., as examined in the COVID-19 Host Genomics
Initiative3,10) and because such overall ancestry lacks the complexity
of local genomic context, such associations may confound the study
of COVID-19 host genetic susceptibility by inappropriately associat-
ing markers of genetic ancestry with disease severity.

To eliminate this confounding, we used genetic ancestry infer-
ence along the genome: After controlling for individual genetic
ancestry proportions, we use local ancestry inference to label each
segment of an individual’s genome by its ancestral origin and then
identify associations of each of these segments with disease severity
(as compared across a composite genome from the same ancestry).
This eliminates socioeconomic and environmental confounders
because independent assortment of parental chromosomes and
recombination within them shuffle these ancestral haplotypes,
resulting in random differences even between siblings in the same
household with ostensibly the same socioeconomic pressures. In
addition to this analysis, we examined viral variants, host immunity
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(e.g., HLA typing), and the microbiome as covariates of majority
ancestry to identify important potential contributors to disease
severity.

Results
Residual viral transport media (VTM) from SARS-CoV-2 clinical diag-
nostic tests were prospectively collected from March 2020 to July
2020 from Stanford Health Care in northern California, USA. Swabs
were selected approximately consecutively from SARS-CoV-2 positive
and negative individuals and linked to structured clinical information
from the electronic health record. In total, 1327 NP swab residualswere
collected from 1049 individuals (736 positive and 313 negative, Fig. 1A
and S2). For digital phenotype abstraction, we developed a method to
generate a COVID-19 clinical severity score automatically from the
electronic health record based on the ordinal scale proposed by the
World Health Organization (Supplementary Table 1 and Supplemen-
taryFig. 2). Clinical datawereobtained through the STAnfordResearch
Repository (STARR), specifically the STRIDE datamanagement system,
which is populated from patients’ clinical and biospecimen data11.
Severity scores were calculated on the date of sample collection and
daily for onemonth before and indefinitely after (Fig. 1B, C, S2, 4). Host
whole genome sequencing was aligned and called using methods for
lowpass data12–14 (meanofmeancoverages: 2.56X ± 2.50X(SD), Fig. 1D),
followed by phasing and imputation with GLIMPSE (Supplementary
Fig. 1A, B)15. Shotgun RNAseq of initial samples yielded high coverage
ofmuchof the viral genome for sampleswith clinical testCT values <35
regardless of RNA yield, which improved with primer-based capture
(Fig. 1E and S1D).

We used genetic ancestry inference to identify subpopulations
highly impacted by the COVID-19 pandemic. Self-reported race and
ethnicity re-demonstrates prior reports of over-representation of
minority race and ethnic populations within the US amongst
COVID-19+ patients (Supplementary Fig. 3A, B). Based on genome-
wide ancestry inference, a higher proportion of individuals of Indi-
genous American genetic ancestry exists in COVID-19 cases as com-
pared to negative controls (Fig. 1F, 44% vs. 26%, χ2 = 99, p < 1e−10 for
individuals having Indigenous American genetic ancestry >10%, char-
acteristic ofHispanic populations). This association persists evenwhen
adjusted for age, sex, and BMI (p = 1.95*10^−3). The association with
the proportion of inferred Indigenous American ancestry, after again
adjusting for age, sex, and BMI, is even more significant (4.64*10^−4),
suggesting a connection between this ancestry and socioeconomic
links to exposure factors. Indeed, evaluation of temporal trends of
genetic ancestry in case positivity reveals early predominance of Eur-
opean ancestry followed by a significant increase in Indigenous
American ancestry afterMay 2020. Thesefindings are recapitulated by
self-reported ethnicity, as themajority of COVID-19 cases betweenMay
and July 2020 self-identified as Hispanic/Latino in the medical record,
an ethnicity often associated with admixed Indigenous American and
European genetic ancestry (Fig. 1G).

We investigated the roleof viral phylogenetics inCOVID-19 severity
and its potential interaction with individual ancestry and disease
severity. Consensus viral genomes (10X coverage at >99% of the gen-
ome) were recovered for 255 samples from unique, unrelated indivi-
duals. The estimated time to the most recent common ancestor of
observed samples is December 11, 2019with a 95% Bayesian CI of (2019-
10-27, 2020-01-12). However, the phylogenetic reconstruction (Fig. 1H)
reveals an early introduction in the area between late December 2019
and early January of 2020 with several independent introductions later
in February 2020. While around 37% of the infected individuals in the
sample have Indigenous American ancestry, there is no evidence of
exclusive transmission amongst individuals of this ancestry. Other
majority-vote genetic ancestries are also not associated with particular
clades (p >0.0514), though a single clade fromearly in the pandemic had
fewer Hispanic individuals (lineage subtending the clade ismarkedwith

a square), consistent with the first wave prior to May 2020, in which
Europeangenetic ancestry individualswereenriched.Wealso tested the
hypothesis of association between viral lineages and disease severity.
No association at a significance level of 0.05was foundbetween specific
clades and severity score at the timeofNP swab in this early stage of the
pandemic.

After adjusting for age, sex and BMI (known correlates of disease
severity16–18) together with overall genetic ancestry proportion, we
assessed association of genetic ancestry at a given genomic position
with the COVID-19 severity score as an ordinal outcome (admixture
mapping). Becauseour captured casepopulationwas enriched for non-
European ancestry groups, we were able to perform admixture map-
ping for six ancestries (African, Native American, Oceanian, South
Asian, East Asian, and European/West Asian). This analysis revealed loci
in chromosomal regions of African and Oceanic ancestry that met
genome-wide significance (threshold determined as previously
described by Shriner et al.)19 (Fig. 2A). SNVs in many of these regions
have been previously associated with neurologic signs, and body size/
adiposity in priorGWAS, aswell as pulmonary traits, viral susceptibility,
and hematologic characteristics (Fig. 2B, Supplementary Data 1). It is
important to note that the absence of prior associations for GWAS
severity (e.g., on chromosome 3) in these disaggregated samples may
be indicative of reduced power to detect these associations based on
the particular admixed populations of this cohort. As a large propor-
tion of these COVID + patients did not carry majority European geno-
mic ancestry, wemay be under-powered to replicate such associations
found in majority European ancestry populations prior. We also note
that admixed East Asian ancestry was underrepresented in our COVID+
cohort, meaning that for stretches of the genome associated with East
Asian ancestry this analysis was underpowered to identify smaller
effect sizes. Critically, in fact because we perform admixture analysis,
these results cannot and do not imply that genetic risk associates with
overall genetic ancestry. Rather, the deconvolution made possible by
ancestry admixture analysis can unmask novel biology.

We next established aweb portal of summary statistics for COVID-
19 severity versus host genotype by genetic ancestry, host HLA type,
and metagenomic alignments (https://covid-omics.org/results). We
also contributed host genetic summary data and viral consensus
sequences to the COVID-19 Host Genetics Initiative3 and GISAID20,
respectively (Fig. 2C). Using this resource, we explored the potential
contribution of the nasopharyngeal microbiome and HLA-type as
biological determinants of COVID-19 severity. A UMAP plot of micro-
biome species abundance shows clustering largely independent of
severity (Fig. 2D). However, a regression of species abundance against
COVID-19 severity (controlling for age, sex and BMI) revealed enrich-
ment of Paracoccus yeei sequence in high severity cases. This is a
bacterium that causes opportunistic infections in critically ill21, organ
transplant22, and dialysis patients23,24, indicating an association with
immune compromise and severe illness (Fig. 2E p = 3.58e−06 after
Bonferroni correction). The HLA-B*07:02 allele (common prototype
allele for the serotype B7) was associated with elevated risk of high
severity score (OR 2.7 [1.4, 5.1], p = 2.9e−03), whereas the HLA-C*15:02
allele (common prototype allele for the serotype Cw15) was associated
with risk reduction (OR0.12 [0.02, 0.82],p = 1.41e−02) (Supplementary
Fig. 3D). HLA-B*07:02 presents epitopes from the SARS-CoV-2 N gene
andOrf1ab25, and theHLA-C*15:02 allele contains twodistinctive amino
acid substitutions at residues 113 and 116 located within the peptide
binding groove. HLA-C*15:02 was associated with milder disease in the
first SARS epidemic26, and is predicted to bind a SARS-CoV-2 Spike
protein epitope27.

Discussion
These results represent a substantial effort to assemble host and viral
genomic, transcriptomic and digital clinical data from a diverse cross-
section of the racial and ethnic groups affected by the COVID-19
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pandemic. We show that ancestry inference can be used to track
changes in the affected population in real-time, demonstrating that
Hispanic/Latino groups (associated with Indigenous American genetic
ancestry) were disproportionately affected during a second pandemic
wave. This is consistent with the model that this second wave was
driven not by introduction from travelers (likely the source of the first
wave), but by economic pressure on essential service workers to leave

their homes and family units, enabling viral spread28. Phylodynamic
overlay on this at-risk population further supports this conclusion,
demonstrating that viral clades did not differentially affect ancestral
groups, nor did they confer differential disease severity during the six
months of prospective enrollment. Thus, the impact of introduction of
viral variants on community spread was likely less than that of expo-
sure related to essential services work.
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In addition to the use of ancestry inference to track the impact of
the pandemic on ancestral populations, genomic regions associated
with COVID-19 severity in the context of local African and Oceanian
ancestries highlight potentially novel pathobiology: Nearby SNPs and
genes have previously been associated in particular with other viral
susceptibility, Alzheimer’s disease pathology, body size and adiposity
measurements and pulmonary function and disease29. Admixture
mapping and local ancestry disaggregation were necessary to reveal
these markers, which would likely otherwise be masked by social and
economic determinants of severity that disproportionately affect
these populations.

Due in large part to health inequities, the populations at highest
risk of severe outcomes are not proportionally represented in
existing datasets. As such, the development of a real-time data
collection strategy from clinical swab residuals was critical to
assessing the relevance of ancestry-specific genetic variation30. We
present resources combining summary host and viral genomic,
metagenomic and transcriptomic data with digital phenotype
abstraction from extant EHR data to help deconvolve genetic
environmental and social factors while tracking spread across the
community. This system can be applied in real-time to model indi-
vidual and population trajectories in the face of future emerging
global infectious disease (https://covid-omics.org/results). In addi-
tion, our work serves to illuminate COVID-19 disease biology that
might otherwise be missed due to the confounding of social and
economic factors that are critically associated with race and ethni-
city in diverse populations.

Methods
Sample collection and diagnostics
This work complies with all relevant ethical regulations and was
performed under protocol IRB-55580, which was approved by the
Stanford University School of Medicine IRB; its most recent
approval was 5/6/2021. Residual VTM from SARS-CoV-2 positive
nasopharyngeal swabs collected during clinical assessment of
asymptomatic and symptomatic patients at Stanford Healthcare
were used in accordance with the Stanford School of Medicine
Institutional Review Board. Participants were not compensated.
Since samples were residual and not linked to identifiable medical
records, our IRB classified this study as low risk and informed
consent was waived. RT-qPCR targeting the envelope gene or
ORF1ab was used to detect infection. Positive samples were defined
as those crossing threshold (CT) of 40 cycles or less on the RT-qPCR
or positive Transcription-Mediated Amplification (TMA) diagnostic
tests used at Stanford Health Care clinical laboratory31. Where
multiple samples were collected from the same individual, the
COVID-19+ sample taken at the time of highest severity score was
used for low pass WGS. Negative controls were confirmed to have
no positive COVID-19 nasal swab tests in our system.

EHR data abstraction and severity score development
A critical task is to determine for every sampled patient the disease
severity from the Electronic Health Records (EHR). To accomplish this
task, we used as the “COVID-19 Clinical Severity Scale” an adapted
version of the “Ordinal Scale for Clinical Improvement” proposed by
the World Health Organization in the COVID-19 Therapeutic Trial
Synopsis (Draft February 18, 2020, Supplementary Table 1). This scale
categorized the COVID-19 severity according to the level of care and
oxygen support. Scores 1 to 2 include patients not requiring supple-
mental oxygen support or hospitalization. However, the WHO defini-
tion of these scores were modified due to their vague scope. Thus,
score “1”, originally described as “no limitation of activities”, was
modified to “asymptomatic patient”, and score “2”, from “limitation of
activities” to “symptomatic patient” (symptoms were extracted and
curated from EHR billed diagnoses). Scores 3 to 4 include patients
hospitalized, with score 4 assigned only to those requiring non-
invasive supplemental oxygen (oxygenmask). Scores 5 to 7 aredefined
as “severe disease” based on level of oxygen support. Thus, “score 5” is
for patients requiring high flow oxygen and “score 6” mechanical
ventilation. “Score 7” includes critically ill patients requiring, in addi-
tion to ventilation, the administration of specific medications (press-
ors), dialysis, or extracorporeal membrane ventilation (ECMO). A
custom algorithmwaswritten that abstracted digital phenotypes from
each chart (see Supplementary Table 1, “EHR annotations”). First,
SARS-CoV-2 positive status was confirmed based on clinical test
reports abstracted from the EHR. SARS-CoV-2 negative patients were
assigned a score of zero. For SARS-CoV-2 positive patients, starting
with the highest score (8, death) and working down, if criteria were
met, the individual was assigned that score. If no clinical notes were
available for data abstraction, then a severity score was not assigned
and these individuals were not included in severity score based ana-
lyses. We calculated the score for any given date and assigned the
maximum value according to the EHR annotations defined for every
score (Supplementary Table 1). For example, patients with annotations
for both ventilation and the administration of pressors received a
score “7” for that day. Clinical data were obtained through the STAn-
ford Research Repository (STARR), a Stanford Medicine’s approved
resource forworkingwith clinical data for researchpurposes extracted
from the Epic database management system used by the Stanford
hospitals. Specifically, we queried the STRIDE data management sys-
tem,which is populated frompatients’ observational clinical, research,
and biospecimen data11. A summary of characteristics of patients
included in each analysis described below is available in Supplemen-
tary Data 2.

Nucleic acid extraction
Host genomic DNAwas extracted from 200ul of VTM inoculatedwith
nasopharyngeal swabs. Using a modified Qiagen DNEASY blood and
tissue kit protocol and quantified using fluorometric readings

Fig. 1 | SARS-CoV-2 pandemic tracking from residual NP swabs and abstracted
EHR data combined with genetic ancestry inference allows identification of
high risk populations and examination of its interaction with viral phylogeny
and disease severity. A We collected samples from 736 SARS-CoV2 positive and
313 negative patients between Mar-Aug 2020 with clinical severity scores ranging
from 1 (ambulatory) to 8 (death). B Examples of individual patient trajectories in
COVID-19 severity score as abstracted from the electronic healthcare record.
C Severity scores abstracted directly from the electronic health record daily for
thirty days before and after the positive NP swab test on all included patients with
severity score ≥ 4 (hospitalized, needs oxygen) demonstrates significant variability
in patient course. D Whole genome sequencing from DNA isolated from 150 ul of
NP swab VTM yielded sequence on >95% of samples with mean of means coverage
2.6X. E RNA sequencing using shotgun sequencing recovered consensus SARS-
CoV-2 sequence on the majority of NP swabs with a clinical PCR CT value <30.

ARTIC primer enrichment increased this yield (Supplementary Fig. 1D). F Genetic
ancestry admixture of individuals with positive versus negative COVID-19 tests in
the present study. Individuals with Indigenous American ancestry are over-
represented in cases, whereas controls show more European and South Asian
genetic ancestry. G Self-reported (top) and genetic ancestry (bottom) of enrolled
COVID-19 + individuals over time reveals disproportionate representation of His-
panic/Latino ethnicity and Indigenous American ancestries during summer pan-
demic wave, whereas the first wave is seen to have predominantly affected non-
Hispanic individuals and individuals of European genetic ancestry. H Phylogenetic
reconstruction of SARS-CoV-2 sequences. Tip colors correspond to the inferred
genetic ancestry of the infected hosts, whose consensus SARS-CoV-2 sequences
were isolated and used for inferring the viral phylogeny. Horizontal lines to the
right of the phylogeny indicate host severity scores corresponding to the tips of the
phylogeny. Severity score codes are displayed in Supplementary Table 1.
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Fig. 2 | COVID-19 severity is associated with local-ancestry-specific risk loci via
admixture mapping, and is also correlated with metagenomic features of the
NP transcriptome. A Ancestry-specific risk loci found in African and Oceanian
ancestries, respectively after correcting for overall genetic ancestry proportion,
BMI, sex, and age. Each colored dot represents a windowof the genome. Black lines
represent ancestry-specific thresholds determined by themethod of Shriner et al.19

Thresholds determined by running one thousand association tests on random
permutations of case-control labels are displayed in Figure S5. B Traits associated
with genomic regions statistically enriched for disease severity in the GWAS

catalog. For additional information including a full list of previously reported SNPs
and neighboring genes, see Supplementary Data 1. All summary statistics are
available at covid-omics.org.C Schematic ofmultiomicpandemic tracking strategy.
Created with BioRender.com. D Uniform manifold approximation and projection
(UMAP) of patient Nasal Microbiome abundances colored by patient COVID-
19 severity score. (E) Regression of species-specific abundance against continuous
disease severity, corrected for age, sex and BMI, identified P. yeei abundance in the
nasopharyngeal microbiome as associated with high severity COVID-19 infections
(Bonferroni adjusted p = 7e−04 (two-sided)).
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(Protocols.io https://doi.org/10.17504/protocols.io.bi8xkhxn). Total
RNA was extracted from 200ul of VTM using a modified Ambion
mirVana mRNA kit protocol (Protocols.io https://doi.org/10.17504/
protocols.io.bi8ykhxw) or Zymo Research Quick-Viral RNA extrac-
tion kits (R1041) and quantified using fluorometric readings.

Host gDNA library preparation and sequencing
Using 1-10 ng of host gDNA, the Illumina Nextera Flex library pre-
paration was performed according to manufacturer’s protocol (Pro-
tocols.io https://doi.org/10.17504/protocols.io.bi8zkhx6). To allow for
multiplexing, gDNA was barcoded using IDT-ILMN Nextera DNA UD
Indices, a set of 10 bp index adapters from Illumina. Indexed samples
were diluted to 4 nM, pooled, and analyzed on an Agilent TapeStation
to ensure the mean DNA fragment size was ~300bp. Pooling and
library quality was further assessed by sequencing the pool using a V3
MiSeq flow cell. 160 sampleswerepooled and sequenced for 76 cycles,
paired end reads. For the purpose of QC, ~50 million reads were
obtained and Q30 was determined to be >92%. If needed the pool was
normalized (balanced) to ensure equal representation of each sample.
The librarywas then sequenced on an Illumina NovaSeq 6000using an
S4 300 cycle flow cell.

Viral RNA library preparation and sequencing
After extraction, RNA acquired from 100 ul nasal swab media was
incubated with recombinant RNAse-free DNase (Qiagen, Inc.) per
manufacturer’s instructions for 15minutes, followed by SPRI bead (GE
Healthcare) purification to remove residual DNA remaining in each
sample. A fixed volume (5uL) of the resulting RNA from each sample,
together with a fixed mass (25 pg) of the External RNA Controls Con-
sortium RNA spike-in mix (ERCC RNA spike-in mix, Thermo Fisher),
served as input for SARS-CoV-2 metatranscriptomic next generation
sequencing (mNGS) library preparation (https://doi.org/10.17504/
protocols.io.beshjeb6; a modification of Deng et al.32).

For samples collected after May 2020, SARS-CoV-2 ARTIC V3
amplicon libraries were made from extracted total nucleic acid for
whole genome sequencing using previously reported protocols [1].
Briefly, 3 ul of total nucleic acid was used as input for a randomly
primed cDNA synthesis reaction. This cDNA served as input for 30
cycles of amplification with ARTIC V3 primers (https://github.com/
artic-network/artic-ncov2019), and was then diluted 1:100 before tag-
mentation. Adaptor tagmentation was performed using homebrew
Tn5, and 8 cycles of index PCR was performed using unique dual
barcode Nextera indices (Detailed protocol: https://protocols.io/
view/artic-neb-tagmentation-protocol-high-throughput-wh-bt66nrhe).
Final libraries were pooled at equal volumes and cleaned at 0.7x (SPRI:
Sample) using SPRIselect beads. Library was sequenced on Illumina
Novaseq SP platform in a paired-end 2 ×150 cycle run. An incubation
step with 1:10 dilution of FastSelect (Qiagen) reagent was included
between the RNA fragmentation and first strand synthesis steps of the
library prep to deplete highly abundant host rRNA sequences present
in each sample. Equimolar pools (n = 160–384 samples) of the resulting
individual dual-barcoded library preps were subjected to paired-end 2
x 150bp sequence analysis on an Illumina NovaSeq 6000 (S2 or
equivalent flow cell) to yield approximately 50 million reads per
sample.

Viral and metagenomic alignment and metagenomics analysis
For SARS-CoV-2 genomes, FASTQ sequences were aligned to the
SARS-CoV-2 reference genome NC_045512.2 using minimap233. Non-
SARS-CoV-2 reads were filtered out with Kraken234, using an index of
human and viral genomes in RefSeq (index downloaded from https://
genexa.ch/sars2-bioinformatics-resources/). Spiked primers for viral
enrichment were trimmed from the ends of short reads using ivar35.
Finally, a pileup of the aligned reads was generated with samtools36,
and consensus genomes were called with ivar. The full pipeline used

is publicly available on Github (https://github.com/czbiohub/sc2-
illumina-pipeline). All viral consensus sequences were uploaded to
the GISAID database (https://www.gisaid.org/).

Host and metagenomic RNA alignment was performed using
STAR run against a combined index of the human reference genome
GRCh38, SARS-CoV2 (SARSCoV2_NC_045512.2), and ERCC spike-ins.
STAR parameters were chosen to avoid bias towards GTAG eukaryotic
splice signatures for both the viral RNA and host RNA analyses.
Metagenomic classification of reads unmapped to both SARS-CoV2
and human was performed using KrakenUniq37. KrakenUniq para-
meters (>=100 kmers and duplication < = less kmers) were chosen to
avoid false positives. From the filtered KrakenUniq output, an abun-
dance table was created by finding the kmer percentages (kmers
divided by the total kmer count) for relevant taxa detected for each
individual. This table included only well-represented taxa, which was
defined as those appearing in at least 10% of patients. A uniform
manifold approximation (UMAP) plot was then created from this table
using fifteen nearest neighbors. In order to identify associations
between specific microbial species and degree of severity of COVID
symptoms for each patient, we used a linear regression of severity
against each species’ abundance separately and used BMI, sex, and age
as covariates of the analysis. The significance of the association was
thresholded at a Bonferroni adjusted p-value of 7e-04.

Host genome sequence alignment
Low-coverage FASTQ sequences underwent quality control assess-
ment via FastQC v0.11.8 before alt-aware alignment to GRCh38.p12
using BWA-MEM v0.7.17-r1188. Duplicate sequences were marked with
MarkDuplicates of the Picard Tools suite v2.21.2. After duplicate
marking, base quality score recalibration was performed with Picard
Tools’ BaseRecalibrator and high-confidence variant call sets from
dbSNP and the 1000 Genomes Project. Quality control metrics,
including coverage, were generated with Qualimap BAMQC v2.2.1,
Samtools v1.10, and Mosdepth v0.2.9. Finally, quality control reports
for each sample were aggregated using MultiQC v1.9. Reproducible
code and steps are available at Protocols.io (https://www.protocols.io/
private/8CFBD1AD8FE611EA815E0A58A9FEAC2A). All high confidence
calls were contributed to the COVID-19 Host Genetics Initiative3.

Variant calling, imputation, PCA, kinship
BAM files were used for an initial calling with bcftools v1.9 mpileup38.
To account for the low-coverage sequencing we used the GLIMPSE
algorithm v1.0 for imputation and phasing15. Briefly, this algorithm
uses a reference set of haplotypes (1000 Genomes Project samples in
our case) to compute genotype likelihoods using a Gibbs sampling
procedure. The imputed data were filtered for low imputation scores
(INFO>0.8), andwere thenmergedwith a reference set that contained
samples from: (1) the 1000Genomes Project39, (2) the HumanGenome
Diversity Project (HGDP)40, and (3) the Simons Genome Diversity
Project (SGDP)41. Pre-filtering, there were 1194 samples in our patient
data set, and 3558 in the reference set. 1062 remained in our patient
cohort after sample QC, and from the reference set 1359 samples were
used for ancestry analyses. While merging these data, we set minor
allele count (MAC) thresholds for our data at 2 (MAF 0.0008) and for
the reference set at 5 (MAF 0.0007) (e.g., MAC > 4 using bcftools), and
a stringent call rate threshold (--geno 0.01 in PLINK2)42,43. The resulting
VCF was loaded into PLINK2 v2.00a3LM using the following flags:
dosage =DS, --import-dosage-certainty 0.8. These merged data had
4,111,339 autosomal variants that survived the filters above. PLINK2
was then used for LD pruning (--indep-pairwise 500 10 0.1) and PCA
(--maf 0.01 --pca). We also extracted the kinshipmatrix of our samples
using the King algorithm (--make-king in PLINK2)44. Missingness data
by chromosome is available in Supplementary Data 3. For admixture
mapping, all individuals with third degree (cousins) or lower relatives
in the dataset were removed.
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Genetic Ancestry Inference and majority-vote assignation
Genetic ancestrywas determined by running supervised local ancestry
inference (RFMix v2.03)45 on the above phased and imputed patient
genomes using a training reference panel of single ancestry samples
selected from the 1000 Genomes Project, HGDP, and SGDP via unsu-
pervised genetic clustering (ADMIXTURE)46 at K = 7 (N = 1359). Only
individuals with greater than 0.95 assignment to one of the seven
unsupervised clusters in that ADMIXTURE analysis were used as
references for RFMix. The cluster labels--African (AFR), East
Asian (EAS), South Asian (SAS), Oceanian (Australo-Papuan) (OCE),
European (EUR), West Asian (WAS), and Indigenous American (NAT)--
were chosen to reflect the biogeographic origin of the reference
samples found in each unsupervised cluster. The number of indivi-
duals thus included in the RFMix reference training are as follows: AFR-
382, EAS- 494, EUR- 155, NAT- 75, OCE- 16, SAS- 171, WAS- 66. Local
genetic ancestry assignments along the genomewere then summed to
create overall genetic ancestry proportions for each sample. These
were used for barplots, covariates for regression analyses, and for
making individual genetic ancestry assignments. Individual genetic
ancestry labels (e.g., for determination of enrichment in cases vs.
controls (Fig. 1F), association with viral clades (Fig. 1H) and controlling
HLA associations with severe disease by genetic ancestry) were
assigned based on these overall proportions via the following decision
sequence: some Oceanian (Australo-Papuan) ancestry (Pacific
Islanders)47 >5%, some Indigenous American ancestry >10%,West Asian
>50%, South Asian >50%, East Asian >50%, European >50%, African
>50%. For individuals meeting none of these criteria an ancestry label
consisting of the two predominant ancestries was given (e.g., East
Asian and European in Fig. 1F).

Admixture mapping association analyses
Admixture mapping association analyses were used to regress the
residual of severity of COVID symptoms for each patient--after cor-
recting for associations with overall genetic ancestry proportion, BMI,
sex, and age--against the local ancestry of each particular window of
the genome for that patient48.With the genome subdivided into 19,474
windows for local genomic ancestry assignment, and assuming com-
plete independence between each, a naive Bonferroni corrected
p-value of 2.57*10^−6 is obtained for genome-wide significance at
p =0.05; however, the genomic ancestry of neighboring, linked
genomic windows is not independent and depends upon the char-
acteristic length of each ancestry segment distribution, itself a func-
tion of the time since admixture in each population. A less stringent
multiple-test correction factor that incorporates this distribution was
determined by considering the spectral density evaluated at frequency
zero of an autoregressive model of local ancestries19, yielding an
effective number of tests for each ancestry. This overall effective
number of testswas takenover only samples thathad at least 5%of that
ancestry represented across their autosomes. Using this framework,
together with the spectrum0.ar function implemented in the R pack-
age coda v 0.19, p-value thresholds for genome-wide significance at
p =0.05 for each ancestry were determined: African 2.54*10^−3, East
Asian 3.89*10^−3, Indigenous American 1.15*10^−3, Oceanian 6.93*10^
−3, South Asian 2.21*10^−3, and European/West Asian 1.83*10^−3. Var-
iants assessed as significant by this correction are described in Sup-
plementary Data 1. An additional analysis was performed in which case
and control labels were randomly permuted amongst the samples to
generate 1000 separate datasets, association analyses were then per-
formed on each of these replicate datasets. To obtain a study-specific
null distribution, the lowest p value for each of these permuted repli-
cates was recorded, and a study-specific p-value threshold (.05 quan-
tile of this aggregate distribution ofminimal p values) was obtained for
each ancestry: African 5.39*10^−4, East Asian 6.1*10^−3, Indigenous
American 1.84*10^−3, Oceanian 2.05*10^−6, South Asian 5.3*10^−4, and
European/West Asian 1.73*10*−2. Two associations are significant

under both of these thresholds: an association on chromosome 14
(43962800-44734273, p-value 1.6e−08) with Oceanian ancestry and an
association on chromosome 21 (36748417-38748006, p-value 5.1e−04)
with African ancestry.

Host HLA sequencing and typing
Host genomic DNA samples ranging from 22-75 ng were batched in
sets of 46 plus one positive and one negative control. AllType™ FAS-
Tplex™NGSAssay kits (One Lambda,AThermoFisher Scientific Brand,
Canoga Park, CA) were used to prepareDNA sequencing libraries for 11
classical HLA genes (HLA-A, HLA-C, HLA-B, HLA-DRB3, HLA-DRB4, HLA-
DRB5, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1). As
the success of the DNA sequencing is dependent on the initial target
amplification and the subsequent library preparation, the following
changesweremade to themanufacturer’s protocol: (1) increased input
DNA volume to 8.6 µl while maintaining the manufacturer’s recom-
mended multiplex PCR protocol per sample; (2) eluted DNA in 12 µl of
suspension buffer after the initial amplicon purification, and pro-
ceeded to the library preparation without normalization process; (3)
increased the number of thermal cycles to 17 in the final DNA library
amplification; (4) eluted DNA fragments in 22 µl for DNA sequencing.
500 µl of 1.3 pMDNA sequencing librarywas loaded into aMiniSeqMid
Output Kit (300-cycles) (FC-420-1004), and sequenced using MiniSeq
DNA sequencer (Illumina Inc., San Diego, CA).

A total of 429 subjects (301 cases, 128 SARS-CoV-2 negative con-
trols) yielded interpretable sequence reads to generate HLA geno-
types. We supplemented these samples with sequencing of buffy coat
or whole blood collected from high severity COVID-19 patients col-
lected from hospitalized patients (n = 193). Fastq files were auto-
matically imported into the TypeStream Visual NGS Analysis Software
Version 2.0 upon the completion of DNA sequencing, and bioinfor-
matically processed for DNA sequence assembly and HLA genotype
assignments with IPD IMGT/HLA Database release version 3.39.049. We
modified the software setting so that a maximum of 1.5 million
sequences or 750,000paired-end sequences are used for the sequence
assembly and HLA allele assignments. We visually inspected the HLA
genotype calls by the software, and made corrections as needed. The
approved HLA genotype results were exported in Histoimmunoge-
netics Markup Language (HML) format50, and generated comma
separated value (CSV) reports for HLA genotypes, HLA serotypes
including Bw4 and Bw6, KIR ligands (C1 and C2) and imputed HLA
haplotypes51,52.

Subjects were grouped in three categories (Negative: SS_MAX=0;
Mild: SS_MAX= 1 –3; Severe: SS_MAX=4 −8), and organized in six
broad ancestry groups [European (EUR), Hispanic (HIS), Asian (ASI),
African American (AFA), Native American (NAM) and Native Hawaiian/
Pacific Islander (HPI)] based on self-reported ethnicity in clinical
records. When self-reported ethnicity was not available, genetic
ancestry calculated from the low pass WGS in this study was used as
described above. We converted the genetic ancestry information to
self-reportedmedical record ethnicity format as follows: Europeanand
West Asian => EUR; some Indigenous American => HIS; East Asian and
South Asian => ASI; African => AFA; fully Indigenous American =>
NAM; some Oceanian => HPI. We compared the distribution of both
HLA serotypes and alleles fromCOVID-19+ individuals with lowdisease
severity (maximum severity score 1−3, n = 336) to those with high
disease severity (maximum severity score 4-8, n = 94). HLA serotype
and allele frequencies were calculated in bothMild and Severe groups,
and Odds Ratio (OR: Mild vs. Severe) and p-values were calculated for
each serotype and allele using Bridging ImmunoGenomic Data-
Analysis Workflow Gaps (BIGDAWG)53. Cochran- Mantel-Haenszel
(CMH) tests54 were subsequently performed for all observed HLA-A,
-B, -C, -DRB1, -DQB1 and -DPB1 serotypes and alleles across threemajor
ethnic groups (EUR, HIS and ASI) using the “mantelhaen.test” function
in stats R package. SubjectswithAFA,NAMandHPI ethnic groupswere
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excluded from CMH tests, because we had only 6, 1 and 5 subjects,
respectively, that yielded HLA genotypes.

Phylodynamic analysis
For Bayesian inference of the viral phylogeny, we assumed the Exten-
ded Bayesian Skyline Plot55 prior on the effective population size and
coalescent prior on the phylogeny, a fixed molecular clock with a
uniform prior distribution centered at 8 × 10−4 substitutions per site
per year as done in56. We assumed the HKY mutation model57 with
default hyperparameter priors in the BEAST2 software58. We ran a
Markov chain Monte Carlo chain to approximate the posterior dis-
tributionof themodel parameters for 20million iterations and thinned
every 5000 iterations. Thefirst 10% of sampleswere discarded asburn-
in. We used Tracer59 to assess the convergence and confirm that the
effective sample size (ESS)was >120 for all parameters (except in 15%of
effective population size parameters, estimations not shown). Finally,
we used TreeAnnotator60 to summarize the phylogeny posterior dis-
tribution and generated the maximum clade credibility tree of Fig. 1H.
To test the association between clade composition and binary traits,
we used the R package treeSeg61.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
As is described above, the data generated in this study have been
deposited at https://covid-omics.org/results. Raw sequencing and
clinical data are not available based on requirements for anon-
ymity and de-identification as outlined in internal review board
approval. Consensus viral sequences have been uploaded to
GISAID. Imputed Genomic data were filtered for low imputation
scores (INFO > 0.8), and were then merged with a reference set
that contained samples from: (1) the 1000 Genomes Project
(https://www.internationalgenome.org/data), (2) the Human Gen-
ome Diversity Project (HGDP, https://www.internationalgenome.
org/data-portal/data-collection/hgdp), and (3) the Simons Gen-
ome Diversity Project (SGDP, https://www.simonsfoundation.org/
simons-genome-diversity-project/). HLA calls were made against
IPD IMGT/HLA Database release version 3.39.0.

Code availability
Custom code for viral sequence alignment is available on GitHub:
https://github.com/czbiohub/sc2-illumina-pipeline.
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