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Methods

Quantitative Trait Model: Alternative Approach to Choosing the Xi

In the second case for our quantitative trait model (Edge and Rosenberg 2015a,b), instead of treating allelic
type “1” as the trait-increasing “+” allele, we model a trait that is selectively neutral during population
divergence: P (Xi = 1) = P (Xi = 0) = 1

2 for all i = 1, 2, . . . , k, so that at each locus, allelic types “1” and
“0” have equal probability of being the “+” allele.

Mating Model: Choosing the Normalizing Coefficients

Recalling that entry mij in mating probability matrix M gives the probability that a randomly drawn mating
pair consists of male i and female j, row and column sums in M must equal 1/N . For convenience, we work
with a doubly stochastic M , dividing it by N just before sampling individuals to obtain a normalized matrix
whose entries sum to 1.

We start with an unnormalized mating matrix M̃ = [m̃ij ] whose entries are:

m̃ij =


1 random mating

ψ(H
(i),f
A,g , H

(j),m
A,g ) assortative mating by admixture

ψ(T
(i),f
g , T

(j),m
g ) assortative mating by phenotype.

(S1)

To construct M from the unnormalized M̃ , we must obtain N2 normalizing constants αij so that M =
[mij ] = [αijm̃ij ] is doubly stochastic. The double stochasticity requirement produces a constraint for each
row and column of matrix M . Each entry in M is nonnegative, and mij must therefore lie in [0, 1].

Infinitely many matrices satisfy the constraints, as the set of 2N equations with N2 variables is underde-
termined. Following Ireland and Kullback (1968), we choose M by identifying the matrix that satisfies the

set of constraints and that is closest to model matrix M̃ by the principle of minimum discrimination infor-
mation (Kullback 1997, pp. 36-43). “Closeness” of two matrices is measured by Kullback-Leibler divergence
DKL (Kullback 1997, pp. 1-11), which is nonnegative, equaling zero if and only if the matrices are identical.

The problem of identifying M can be written as a convex optimization problem. We seek to minimize

min
{mij}

DKL(M ||M̃) = min
{mij}

N∑
i=1

N∑
j=1

mij log
mij

m̃ij
, (S2)

with constraints

N∑
j=1

mij = 1 for each i from 1 to N,

N∑
i=1

mij = 1 for each j from 1 to N,

0 ≤ mij ≤ 1 for all (i, j) ∈ {1, 2, · · · , N}2. (S3)

We use the interior-point method (Nesterov and Nemirovskii 1994; Forsgren 2002), which iteratively traverses
the feasible region to obtain the optimal solution numerically, as implemented in the mosek function of R
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package Rmosek (MOSEK ApS 2017). For fixed M̃ , the Hessian of the KL divergence has

∂2DKL(M ||M̃)

∂mij∂mk`
=

1

mij
δikδj`,

where δ is the Kronecker delta. Because ∇2DKL > 0 for all mij ∈ (0, 1), the KL divergence function is

strictly convex (Boyd and Vandenberghe 2004, Section 3.1.4) in each of the N2 variables in M for fixed M̃ ,
and numerical minimization finds the unique global minimum (Boyd and Vandenberghe 2004, Section 4.2.1).

The normalization procedure produces relatively little distortion between unnormalized and normalized
matrices. In Figure S7, we examine the Kullback-Leibler (KL) divergences and correlation coefficients
between unnormalized and normalized matrices in an example setting. The KL divergences stabilize over
time at a relatively low value, and the correlation coefficients stabilize near 0.8; a visual illustration of an
unnormalized and its associated normalized matrix depicts relatively little difference.

Simulation Procedure: Model for Allele Frequencies

In the second case for our allele frequency model, we simulate sets of k allele frequency pairs (pi, qi), i ∈
{1, . . . , k}, following Edge and Rosenberg (2015a). Allele frequencies πi for derived alleles in the “ancestral”
population of S1 and S2 are drawn based on the neutral site frequency spectrum: P [πi = j/(2Na)] ∝ 1/j,
where Na indicates the size of the ancestral population (Charlesworth and Charlesworth 2010, Eq. B6.6.1).
We use 2Na = 20, 000. We assume each locus i in S1 and S2 undergoes independent genetic drift following
a split. We add to πi random numbers εi,1 and εi,2 from a Normal(0, γπi(1 − πi)) distribution to simulate
derived allele frequencies at locus i in populations S1 and S2, respectively. The parameter γ represents
the variance introduced by drift into the allele frequencies of the divergent populations. Following Edge
and Rosenberg (2015a), we choose γ = 0.3 so that genetic differentiation between S1 and S2 at a group of
simulated loci approximates worldwide human FST estimates. If εi,1 ≥ εi,2, then we assign pi = πi + εi,1
and qi = πi + εi,2. If εi,1 < εi,2, then we assign pi = 1− (πi + εi,1) and qi = 1− (πi + εi,2). Note that if this
procedure produces pi > 1 or qi < 0, then we assign pi = 1 and qi = 0 so that 0 ≤ qi ≤ pi ≤ 1.

Results

In the main text, we considered the effects of the assortative mating strength c and the number of loci k on
the correlation between admixture and phenotype in the admixed population, and on the separate variances
of admixture fraction and phenotype. In this Supporting Information, we also examine the effect of the allele
frequencies and the manner of assigning trait contributions of individual loci.

Allele Frequencies (pi and qi)

We evaluate the effect of allele frequencies pi and qi on the quantities of interest. Instead of treating the
two source populations as fixed for different alleles, the frequencies pi and qi are now sampled according
to the simulation procedure described in the “Simulation Procedure: Model for Allele Frequencies” section.
Because our results show a monotonic trend across the number of loci we examined (“Number of Trait Loci
(k)” section), we focus on a single value of k = 10, the number of loci corresponding to the base case.

Cor[HA, T ]

Figure S4A displays Cor[HA, T ] under the model with simulated rather than fixed allele frequencies. Cor[HA, T ]
starts from a lower correlation value at time g = 0, 0.456, compared to the base case (Figure 4E) value of
1. If all loci have Xi = 1, then by definition of trait value T , an individual’s trait value is determined
by the number of “1” alleles across the trait loci. Because the allele “1” is randomly drawn at each locus
i = 1, 2, . . . , k with probabilities P (Lij = 1 | M = S1) = pi and P (Lij = 1 | M = S2) = qi with j = 1, 2
(“Quantitative Trait Model” section) and the mean absolute difference between simulated pi and qi across
k loci is small, some individuals in the source population S1 have lower trait values than some individuals
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in S2, and vice versa. However, due to the constraint pi ≥ qi across all trait loci, individuals from S1 have
higher probability of having a larger trait value than those from S2. This property accounts for the nonzero
correlation between ancestry and trait present in the source populations outside the base case setting.

The qualitative differences between the three mating models remain similar to the base case, as shown
in Figure S4A. All three mating models, however, show an increased rate of decoupling between the ad-
mixture fraction and the trait, in that the correlation decreases more rapidly. For random mating, it takes
only 4 generations for Cor[HA, T ] to drop to below half of its starting value, reaching 0.170. The corre-
sponding values under assortative mating by admixture fraction and assortative mating by trait are g = 5
(Cor[HA, T ] = 0.240) and g = 10 (Cor[HA, T ] = 0.220), respectively. Compared to the base case, the corre-
lation between ancestry and trait in the source population is weaker if the allele frequencies are drawn from
the simulation, and thus, the “1” allele does not necessarily trace back to the source population S1. Under
this setting, the decoupling of admixture fraction and phenotype in producing admixed individuals becomes
more significant than in the base case.

Var[HA] and Var[T ]

The admixture fraction values at the source populations are not affected by the allele frequencies: HA = 1
and HA = 0 for all individuals in S1 and S2, respectively. If s1,0 = s2,0 = 0.5, then Var[HA] starts at
0.25 in the founding parental pool, irrespective of the allele frequencies. Comparing Figure S4B and 5E,
the Var[HA] curves under random mating (red) and assortative mating by admixture (blue) are not affected
by the change in allele frequencies pi and qi, holding other parameters fixed. Under random mating and
assortative mating by admixture, mate choice is independent of the parameters that affect the quantitative
trait, and thus, the change in pi and qi does not alter the admixture fraction distribution at each generation.

By contrast, under assortative mating by phenotype, Var[HA] (green) is affected by the change in the
nature of the allele frequencies. Var[HA] under assortative mating by phenotype closely follows that under
random mating. The simulated allele frequencies have relatively small differences (δ̄ ≈ 0.0509) between
source populations S1 and S2. With Xi = 1 for all loci, the between-group difference in trait values is small
as well, whereas all individuals in S1 and S2 still have HA = 1 and HA = 0, respectively. Therefore, with
the simulated allele frequencies, the effect on the admixture fraction of assortative mating by phenotype
is similar to that in the random mating case. This scenario contrasts with the base case, where allele “1”
can be associated with the source population S1 with certainty, and Var[HA] under assortative mating by
phenotype behaves similarly to the case of assortative mating by admixture fraction.

With the simulated allele frequencies, Var[T ] = 0.877 in the founding parental pool. At g = 1, Var[T ]
values under random mating and under assortative mating by admixture are 0.784 and 0.825, respectively.
Assortative mating by admixture maintains higher Var[T ] than random mating until g = 8 and then follows
the Var[T ] curve for random mating. By contrast, Var[T ] under assortative mating by trait gradually
increases until g = 13, at which it achieves its maximum of 0.977, and then decreases to 0.935 at g = 40.

Trait Contributions of Individual Loci (Xi)

Returning to the case with fixed allele frequencies of 1 and 0 in the source populations, we next examine
the case in which the trait has the property that both alleles have equal probability of being the “+” allele,
as described in the “Quantitative Trait Model” section: P (Xi = 1) = P (Xi = 0) = 1

2 for all i = 1, 2, . . . , k.
Figure S5 displays the results using the number of trait loci from the base case, k = 10. The qualitative
behavior of the result does not depend on the number of loci, with the other parameters fixed.

Cor[HA, T ]

If we let the number of loci with Xi = 1 be z, then the number of loci with Xi = 0 is k − z. Because
pi = 1 and qi = 0 across all loci in the base case, by definition of trait value T , the trait value is 2z for every
individual in S1 and 2(k− z) for every individual in S2. For a randomly generated set of Xi, i = 1, 2, . . . , k,
under P (Xi = 1) = P (Xi = 0) = 1

2 , if z 6= k − z, then Cor[HA, T ] = 1 in the founding parental pool Hpar
0 ,

as shown in Figure S5A. However, compared with the base case, the correlation decays much more rapidly.
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With the P (Xi = 1) 6= 1 setting, the ancestry and trait are not as tightly coupled in the source populations.
However, as in other cases, assortative mating by phenotype preserves the correlation for the longest, and
random mating decouples the correlation the fastest of the three mating models.

If the numbers of loci with Xi = 1 and Xi = 0 are equal (z = k − z), then all individuals in the source
populations have trait value k irrespective of their origin, and thus, no correlation exists between trait and
ancestry in the source population. Hence, Cor[HA, T ] is 0 in the founding parental pool Hpar

0 , and the
correlation remains at 0 throughout the time simulated, irrespective of the mating type (Figure S5D).

Var[HA] and Var[T ]

The panels of Figure S5 display results under P (Xi = 1) = P (Xi = 0) = 1
2 , fixing other parameters as in

base case. By the same reasoning as in the “Allele Frequencies (pi and qi)” section, the change in parameters
involving the quantitative trait does not affect Var[HA] under random mating and under assortative mating
by admixture fraction. A comparison of Figure S5B and S5E with Figure 5E shows that Var[HA] values
under assortative mating by admixture fraction are not affected by the change in the Xi.

For z 6= k − z, results with z = 6 and k − z = 4 appear in Figure S5B. Some correlation between the
admixture fraction and allele “1” exists in the source populations, and thus, Var[HA] for assortative mating
by trait (green) somewhat follows that for assortative mating by admixture (blue). However, compared to
the base case (Figure 5E), where the “1” allele can be traced back to S1 with certainty, a more noticeable
deviation from the blue curve is observed. As z increases from 6 to 10, the pattern is similar; the quantitative
behavior of Var[HA] would approach the base case, equivalent to z = 10 (green curve in Figure 5E).

In the founding parental pool, Var[T ] = 4.002 in our example with z 6= k − z. After one generation of
mating, Var[T ] drops to 1.997, 2.934, and 2.923, under random mating, assortative mating by admixture
fraction, and assortative mating by trait, respectively. From g = 2, Var[T ] gradually increases and achieves
steady state values for the three models near 4.942 at g = 5, 4.934 g = 8, and 6.929 at g = 14, respectively.
In accord with other cases, assortative mating by trait has the highest Var[T ] values across generations.

If z = k − z (Figure S5E), then allele “1” has equal probability of being traced back to either source
population. In this scenario, the Var[HA] curve from assortative mating follows the Var[HA] curve from
random mating. Because all individuals have the same trait value in the founding parental pool irrespective
of their origin, Var[T ] = 0 at g = 0. For all three mating models, Var[T ] gradually increases from g = 1 to
achieve steady state values that are the same as those from the z 6= k − z case.
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Figure S1: Joint distribution of HA and T as a function of time. The simulation shown is the same one from
Figures 4E, 5E, and 6E, using the parameters from the base case. As described in the “Population Model”
and “Quantitative Trait Model” sections, the possible values for the admixture fraction at generation g are
0, 1/2g, 2/2g, . . . , (2g−1)/2g, 1, whereas the possible values for the trait are 0, 1, . . . , 2k across all generations.
In each panel, the top, right, and center plots display a marginal distribution of HA, a marginal distribution
of T , and a joint distribution of HA and T , respectively. Colors follow Figure 4.
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Figure S2: The correlation coefficient Cor[Hf
A,g, H

m
A,g] between the admixture fractions of the members of

mating pairs as a function of time. The simulations shown are the same ones from Figure 4. (A) k = 1,
c = 0.1. (B) k = 1, c = 0.5. (C) k = 1, c = 1.0. (D) k = 10, c = 0.1. (E) k = 10, c = 0.5. (F) k = 10,
c = 1.0. (G) k = 100, c = 0.1. (H) k = 100, c = 0.5. (I) k = 100, c = 1.0. Colors and symbols follow
Figure 4.
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Figure S3: The correlation coefficient Cor[T f
g , T

m
g ] between the phenotypes of the members of mating pairs

as a function of time. The simulations shown are the same ones from Figure 4. (A) k = 1, c = 0.1. (B)
k = 1, c = 0.5. (C) k = 1, c = 1.0. (D) k = 10, c = 0.1. (E) k = 10, c = 0.5. (F) k = 10, c = 1.0. (G)
k = 100, c = 0.1. (H) k = 100, c = 0.5. (I) k = 100, c = 1.0. Colors and symbols follow Figure 4.
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Figure S4: Cor[HA, T ], Var[HA], and Var[T ] in a model in which the allele frequencies pi and qi in the source
populations S1 and S2 are drawn from a simulation rather than being treated as fixed at 1 and 0, respectively.
All other parameters are kept at the values of the base case. (A) Correlation between admixture fraction
and trait (Cor[HA, T ]). (B) Variance of the admixture fraction (Var[HA]). (C) Variance of the phenotype
(Var[T ]). Colors and symbols follow Figure 4. The figure relies on a single replicate of simulated allele
frequencies pi and qi following a genetic drift model in which S1 and S2 descend from a common ancestral
population, as described in the “Simulation Procedure: Model for Allele Frequencies” section. The simulated
allele frequencies across k = 10 loci have mean values of p̄ ≈ 0.502 and q̄ ≈ 0.449 and variance s2

p ≈ 0.214
and s2

q ≈ 0.235. If we let δi = pi − qi, with δi > 0, then the mean of the allele frequency difference across

the 10 loci is δ̄ ≈ 5.310× 10−2, with δ2 ≈ 7.865× 10−3. Across k = 10 loci, FST ≈ 0.075, as computed using
Eq. 14 of Edge and Rosenberg (2015a). The y-axis of Var[HA] is plotted on a logarithmic scale. Results
using other replicates of simulated allele frequencies with k = 10 are shown in Figure S8.
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Figure S5: Cor[HA, T ], Var[HA], and Var[T ] under a trait model in which trait loci do not systematically
have greater values in one source population: P (Xi = 1) = P (Xi = 0) = 0.5. All other parameters are kept
at the values of the base case. Of k = 10 trait loci, we denote the number of randomly selected loci to have
Xi = 1 by z. (A) Cor[HA, T ], z = 6. (B) Var[HA], z = 6. (C) Var[T ], z = 6. (D) Cor[HA, T ], z = 5. (E)
Var[HA], z = 5. (F) Var[T ], z = 5. Colors and symbols follow Figure 4. Panels A-C and D-F each relies on a
single replicate of a set of Xi obtained by sampling the Xi from a Binomial(10, 1

2 ) distribution and retaining
those with the specified value of z = 6 (top panels) and z = 5 (bottom panels). The y-axis of Var[HA] is
plotted on a logarithmic scale. Results using other replicates of simulated allele frequencies with k = 10 are
shown in Figures S9 (for z = 6) and S10 (for z = 5).
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Figure S6: Correlation between admixture fraction and quantitative trait value (Cor[HA, T ]) as a function
of time, using a fixed rather than a changing scaling factor in the mating function. For the denominator of
the exponent in Eq. A2, in assortative mating by admixture, the scaling constant is chosen to be 1 for each
generation; for assortative mating by phenotype, the scaling constant is 2k for each generation. (A) k = 1,
c = 0.1. (B) k = 1, c = 0.5. (C) k = 1, c = 1.0. (D) k = 1, c = 2.0. (E) k = 10, c = 0.1. (F) k = 10, c = 0.5.
(G) k = 10, c = 1.0. (H) k = 10, c = 2.0. (I) k = 100, c = 0.1. (J) k = 100, c = 0.5. (K) k = 100, c = 1.0.
(L) k = 100, c = 2.0. Colors and symbols follow Figure 4.
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Figure S7: Similarity between unnormalized and normalized mating matrices. The Kullback-Leibler (KL)
divergence (Eq. S2) and Pearson correlation coefficient are computed between unnormalized and normalized
mating matrices in each generation; the correlation coefficients between matrices are computed by repre-
senting a matrix as a vector of its elements. The sum of all entries in normalized matrices M is 1. (A)
KL divergence, assortative mating by admixture. (B) KL divergence, assortative mating by phenotype.
(C) Pearson correlation coefficient, assortative mating by admixture. (D) Pearson correlation coefficient,
assortative mating by phenotype. Each point plotted in a given generation represents a value from one of
the 100 replicate trajectories. The lines in each plot represent the minimum, median, and maximum of
the 100 replicate values. The simulation shown is the same one from Figures 4E, 5E, and 6E, using the
parameters from the base case. The random mating case does not require normalization and is omitted.
(E) An example of an unnormalized matrix (left) and the corresponding normalized matrix (right) from an
assortative mating by trait simulation replicate with median Pearson correlation coefficient 0.782 at g = 40.
For ease of visualization, the matrix rows and columns are permuted. The permutation was obtained by
biclustering of the unnormalized matrix, and the same permutation was applied to the normalized matrix
to preserve row and column orders between two matrices.
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Figure S8: Cor[HA, T ] (top row), Var[HA] (middle row), and Var[T ] (bottom row) using different replicate
sets of simulated allele frequencies pi and qi with k = 10 loci, as described in Figure S4. Different columns
represent results from different replicates of simulated pi and qi. Colors and symbols follow Figure 4. The
y-axis of Var[HA] is plotted on a logarithmic scale with base 10.
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Figure S9: Cor[HA, T ] (top row), Var[HA] (middle row), and Var[T ] (bottom row) using different replicates of
a set of Xi for k = 10 loci sampled from a Binomial(10, 1

2 ) distribution with a constraint z = 6 (Figure S5A-
C). Colors and symbols follow Figure 4. The y-axis of Var[HA] is plotted on a logarithmic scale.
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Figure S10: Cor[HA, T ] (top row), Var[HA] (middle row), and Var[T ] (bottom row) using different replicates
of a set of Xi for k = 10 loci sampled from a Binomial(10, 1

2 ) distribution with a constraint z = 5 (Figure S5D-
F). Colors and symbols follow Figure 4. The y-axis of Var[HA] is plotted on a logarithmic scale.
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