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Genealogical tree modeling is essential for estimating evolution-
ary parameters in population genetics and phylogenetics. Recent
mathematical results concerning ranked genealogies without leaf
labels unlock opportunities in the analysis of evolutionary trees.
In particular, comparisons between ranked genealogies facilitate
the study of evolutionary processes of different organisms sam-
pled at multiple time periods. We propose metrics on ranked tree
shapes and ranked genealogies for lineages isochronously and
heterochronously sampled. Our proposed tree metrics make it
possible to conduct statistical analyses of ranked tree shapes and
timed ranked tree shapes or ranked genealogies. Such analyses
allow us to assess differences in tree distributions, quantify esti-
mation uncertainty, and summarize tree distributions. We show
the utility of our metrics via simulations and an application in
infectious diseases.
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Gene genealogies are rooted binary trees that describe the
ancestral relationships of a sample of molecular sequences

at a locus. The properties of these genealogies are influenced by
the nature of the evolutionary forces experienced by the sample’s
ancestry. Hence, assessing differences among gene genealogies
can provide information about differences in these forces. In this
article, we propose a distance on genealogies that enables biolog-
ically meaningful comparisons between genealogies of nonover-
lapping samples. Our proposed distance, in its more general
form, is a distance on ranked genealogies.

Ranked genealogies are rooted binary unlabeled trees with
branch lengths and ordered internal nodes (Fig. 1B). These
genealogies are also known as Tajima’s genealogies (1, 2), as
they were examined by Tajima (3). Unlabeled ranked genealo-
gies are coarser than labeled ranked genealogies but finer
than unlabeled unranked genealogies (Fig. 1); in a labeled or
unlabeled unranked genealogy, multiple bifurcations may occur
simultaneously (4).

Recently, there has been increasing interest in modeling
ranked genealogies for studying evolutionary dynamics (1, 5, 6).
One method for inferring evolutionary parameters from molecu-
lar data is based on the Tajima coalescent for ranked genealogies
(2): Modeling of ranked genealogies, as opposed to labeled
ranked genealogies as in the Kingman coalescent, reduces the
dimensionality of the inference problem. Thus, for example, in
studying macroevolution, Maliet et al. (7) proposed a model on
ranked tree shapes—ranked genealogies without branch lengths
but with internal node orders retained—to investigate factors
influencing nonrandom extinction and the loss of phylogenetic
diversity.

Many metrics on labeled trees have been proposed, such
as the Robinson–Foulds (RF) metric (8), the Billera–Holmes–
Vogtmann (BHV) metric (9), and the Kendall–Colijn (KC)
metric (10). These metrics have been used for summarizing pos-
terior distributions and bootstrap distributions of trees on the
same set of taxa (11, 12), for comparing estimated genealogies of
the same organisms obtained with different procedures, and for
quantifying uncertainty in inferring evolutionary histories (13).
The Colijn–Plazzotta (CP) metric (14) on the coarser-resolution
space of tree shapes—rooted binary unlabeled unranked trees

without branch lengths—has recently been devised. To our
knowledge, no other metrics on ranked tree shapes or ranked
unlabeled genealogies have been proposed to date.

A tree metric on the space of ranked genealogies can facil-
itate evaluations of the quality of an estimation procedure, by
enabling measurements of the distance between an estimated
ranked genealogy and the true ranked genealogy. It can assist
in comparing different estimators from different procedures and
in comparing estimated ranked genealogies of different organ-
isms living at different geographical locations and different time
periods. Moreover, a useful tree metric not only provides a
quantitative measure for ranked genealogy comparison, but can
also discriminate between key aspects of different evolutionary
processes (15). We show that our metrics separate samples of
genealogies originating from different sampling distributions of
ranked tree shapes and ranked genealogies. Our distances enable
the computation of summary statistics, such as the mean and
the variance, from samples of ranked genealogies. When ranked
genealogy samples are obtained from posterior distributions of
genealogies, such as those obtained from Bayesian Evolution-
ary Analysis by Sampling Trees (BEAST) (16), our tree metrics
enable the construction of credible sets and Markov chain Monte
Carlo (MCMC) convergence assessment.

We first define a metric on ranked tree shapes. Our metric
relies on an integer-valued triangular matrix representation of
ranked tree shapes. This matrix representation allows us to use
metrics on matrices, such as the L1 norm and L2 (Frobenius)
norm, to define metrics on ranked tree shapes. The choice of
these two distances produces computational benefits, as compu-
tations of the metrics are quadratic in the number of leaves. Our
metrics on ranked tree shapes retain more information than met-
rics based on unlabeled unranked tree shapes alone. We expand
our metric definition to ranked genealogies, including branch
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Fig. 1. Types of tree topology. (A) Labeled ranked tree shape. (B)
Ranked tree shape (TR). (C) Labeled unranked tree shape. (D) Tree shape.
Genealogies corresponding to each topology include branch lengths.

lengths by weighting the matrix representation of ranked tree
shapes by branch lengths.

We define metrics on isochronous ranked tree shapes and
ranked genealogies, with all samples obtained at the same point
in time. We next define metrics on heterochronous ranked
tree shapes and ranked genealogies, in which samples are time
stamped. While modeling isochronous genealogies is the stan-
dard practice for macroscopic organisms, such as animals and
plants, modeling heterochronous genealogies is the standard
approach for rapidly evolving organisms, such as viruses and bac-
teria (16–21). Heterochronous genealogies are also increasingly
relevant in the study of ancient DNA samples (22–26).

We analyze properties of our proposed metrics and compare
them to other tree-valued metrics—such as the BHV (9), KC
(10), and CP (14) metrics—by projecting these other metrics
into the space of ranked tree shapes and ranked genealogies.
We then demonstrate the performance of our metrics on simula-
tions from various tree topology distributions and demographic
scenarios. We use our distances to compare posterior distri-
butions of genealogies of human influenza A/H3N2 virus from
different geographic regions and to assess MCMC convergence.
An implementation of our metrics is available for download at
https://github.com/JuliaPalacios/phylodyn.

Definitions of Tree Topologies and Genealogies
All of the trees we consider are rooted and binary. We first
assume that trees are isochronously sampled; that is, all tips of
the trees start at the same time. A ranked tree shape with n
leaves is a rooted binary unlabeled tree with an increasing order-
ing of the n − 1 interior nodes, starting at the root with label 2
(Fig. 1B). We use the symbol TR to denote a ranked tree shape.
A ranked genealogy is a ranked tree shape equipped with branch
lengths. We use the symbol gR to denote a ranked genealogy.
Although we focus mainly on ranked tree shapes and ranked

genealogies, we will compare our metrics to metrics defined on
other rooted tree spaces. A labeled ranked tree shape (Fig. 1A)
and a labeled ranked genealogy are the corresponding labeled
counterparts of unlabeled ranked trees. A labeled unranked
tree shape (Fig. 1C) and a labeled unranked genealogy are a
rooted binary labeled tree shape and a rooted binary labeled
genealogy without ranking of internal nodes, respectively. A tree
shape (Fig. 1D) is a rooted binary unlabeled unranked tree. A
genealogy is a tree shape equipped with branch lengths.

Tree Metrics for Comparative Analysis
Metrics on Labeled Trees. Many tree metrics have been proposed
for phylogenetic studies (8–10, 27–30). We consider several of
these. Billera et al. (9) introduced a metric on labeled unranked
genealogies that is now commonly known as BHV space. Owen
and Provan (31) and Chakerian and Holmes (11) provided
polynomial algorithms and implementations for calculating the
geodesic distance metric proposed by Billera et al. (9). Recently,
Kendall and Colijn (10) proposed a metric on labeled unranked
tree shapes and labeled unranked genealogies, representing each
tree as a convex combination of two vectors—one encoding the
number of edges from the root to the most recent common
ancestor of every pair of tips in the tree and the other encoding
the sum of the branch lengths of the corresponding paths. The
most popular metric that can be computed in polynomial time
is the symmetric difference of Robinson and Foulds (RF) (8) on
labeled unranked tree shapes. This measure has an associated
branch-length measure RFL on labeled genealogies (27).

Metrics on Unlabeled Trees. A metric on unlabeled trees is desir-
able because it enables comparison between trees of different
samples. However, few such metrics are available. Colijn and
Plazzotta (14) proposed a metric on tree shapes which is the
Euclidean norm of the difference between two integer vectors
that uniquely describe the two trees. Poon et al. (32) devel-
oped a kernel function that measures the similarity between
two genealogies by accounting for differences in branch lengths
and matching the number of descendants over all nodes for
both trees. Lewitus and Morlon (33) proposed the Jensen–
Shannon distance between the spectral density profiles of the
corresponding modified graph Laplacians of the genealogies.

We are introducing metrics for unlabeled ranked tree shapes
and unlabeled ranked genealogies. To define our metrics on
ranked tree shapes, we need to introduce a unique encoding of a
ranked tree shape as an integer-valued triangular matrix.

New Approaches
Unique Encoding of Ranked Tree Shapes and F Matrix. Let TR

be a ranked tree shape with n leaves sampled at time 0 = un .
Let (un−1, . . . , u1) be the n − 1 coalescence times. Here, time
increases into the past (rootward), un−1 < . . .< u1, and un and
u1 correspond to the most recent sampling time and the time
to the most recent common ancestor (root), respectively. An F
matrix that encodes TR is an (n − 1)× (n − 1) lower triangu-
lar matrix of integers with elements Fi,j = 0 for all i < j , and
for 1≤ j ≤ i , Fi,j is the number of extant lineages in (uj+1, uj )
that do not bifurcate during the entire time interval (ui+1, uj )
traversed forward in time (tipward).

In Fig. 2B, we show the corresponding F matrix to the ranked
tree shape depicted in Fig. 2A. In the interval (u2, u1), there are
two lineages, so F1,1 = 2. Traversing tipward, one of the two lin-
eages extant at time (u2, u1) branches at time u2, while the other
lineage does not branch throughout the entire interval (u5, u1).
This gives the first column of the F matrix: F2,1 =F3,1 =F4,1 = 1.
For the second column, we start with three lineages in the
interval (u3, u2), F2,2 = 3. Traversing tipward, of the three lin-
eages extant at (u3, u2), one branches at u3 (F3,2 = 2), and one
branches at u4 (F4,2 = 1). We construct the third column by
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Fig. 2. Unique encoding of isochronous ranked tree shapes and F matri-
ces. (A) Example of a ranked genealogy with isochronous sampling. (B) The
corresponding F matrix that encodes the ranked tree shape of the tree in A.

starting from four lineages in (u4, u3), F3,3 = 4. One lineage
branches at u4, and thus, F4,3 = 3. Finally, in the interval (u5, u4),
there are five lineages, which gives F4,4 = 5.

If TR is a heterochronous ranked tree shape with n leaves and
m sampling events, then the corresponding F-matrix representa-
tion is an (n +m − 2)× (n +m − 2) lower triangular matrix of
integers, where Fi,j for 1≤ j ≤ i is the number of extant lineages
in (uj+1, uj ) that do not bifurcate or become extinct during the
entire time interval (ui+1, uj ), traversing forward in time. Here,
(un+m−1, un+m−2, . . . , u1), such that 0 = un+m−1 < un+m−2 <
. . .< u1, are the n +m − 1 ordered change points of TR, at each
of which the number of branches changes either by a coales-
cent event or by a sampling event. We show an example of a
heterochronous ranked tree shape and its F-matrix encoding in
SI Appendix, Fig. S5 C and D.

Although the branch lengths and the actual values of coales-
cent and sampling times are irrelevant for the specification of the
ranked tree shape, we rely on the ui to identify the order and type
of change points: coalescence or sampling in TR and F.

Theorem 1 (Unique Encoding of Ranked Tree Shapes). The map by
which ranked tree shapes with n samples and m sampling events are
encoded as F matrices of size (n +m − 2)× (n +m − 2) uniquely
associates a ranked tree shape with an F matrix.

In other words, given an F matrix, if it encodes a ranked tree
shape, then it encodes exactly one ranked tree shape. The proof
appears in SI Appendix, section 1. In the next section, we lever-
age the F-matrix representation of ranked tree shapes to define
a distance between ranked tree shapes. From this point onward,
we assume a matrix F represents a ranked tree shape.

Metrics on Ranked Tree Shapes and Ranked Genealogies. We define
two distance functions d1 and d2 on the space of ranked tree
shapes with n leaves as follows. For a pair of ranked tree shapes
TR

1 and TR
2 and their corresponding F-matrix representations

F(1) and F(2) of size r × r , where r ≥n − 1,

d1(TR
1 ,TR

2 ) =

r∑
i=1

i∑
j=1

|F (1)
i,j −F

(2)
i,j |, [1]

d2(TR
1 ,TR

2 ) =

√√√√ r∑
i=1

i∑
j=1

(
F

(1)
i,j −F

(2)
i,j

)2
. [2]

The two distances are metrics as they inherit L1 and L2 element-
wise matrix metrics with well-understood properties (34). The
definitions are valid for both isochronous and heterochronous
ranked tree shapes, as both types of trees have unique matrix
encodings.

In the following definition, we include branch lengths to define
distances between ranked genealogies. We define two weighted
distance functions dw

1 and dw
2 on the space of ranked genealogies

with n samples and m sampling events. We first define the weight
matrix W of a ranked genealogy gR as a lower triangular matrix of
size (n +m − 2)× (n +m − 2) with entries Wi,j = uj − ui+1 for
j ≤ i and Wi,j = 0 otherwise. Here, (un+m−1, un+m−2, . . . , u1),
such that 0 = un+m−1 < un+m−2 < . . .< u1, is the vector of n − 1
coalescent times tk and m sampling times s`, ordered with time
increasing into the past (rootward). For a pair of ranked genealo-
gies gR

1 and gR
2 , and their corresponding F-matrix representations

F(1) and F(2),

dw
1 (gR

1 , gR
2 ) =

r∑
i=1

i∑
j=1

|F (1)
i,j W

(1)
i,j −F

(2)
i,j W

(2)
i,j |, [3]

dw
2 (gR

1 , gR
2 ) =

√√√√ r∑
i=1

i∑
j=1

(
F

(1)
i,j W

(1)
i,j −F

(2)
i,j W

(2)
i,j

)2
, [4]

where W(1) and W(2) are the weight matrices associated with
gR

1 and gR
2 , respectively. SI Appendix, Fig. S6 shows an example

weight matrix W, associated with the example heterochronous
ranked genealogy and its F matrix in SI Appendix, Fig. S5
C and D.

Proposition 2. The weighted distances dw
1 and dw

2 are metrics.

The proof appears in SI Appendix, section 2. Our distances
on ranked tree shapes and ranked genealogies are distances
between trees with the same number of leaves and, addition-
ally in the heterochronous case, the same number of sampling
events. An extension to cases in which the numbers of sampling
events differ but the total numbers of leaves remain the same is
described in SI Appendix, section 3.

In the following section, we propose sample summary statistics
based on our metrics d1 and d2 for ranked tree shapes and dw

1

and dw
2 for ranked genealogies.

Ranked Tree Shape and Ranked Genealogy Summary Statistics. We
first use our proposed distances to define a notion of mean value
and dispersion value from a finite sample {TR

1 ,TR
2 , . . . ,TR

s } of
ranked tree shapes with n leaves.

Our proposed measures of centrality are the L2-medoid sets
defined as

T i := argmin
T∈{TR

1 ,TR
2 ,...,TR

s }

s∑
j=1

d2
i (T ,TR

j ) [5]

for i = 1, 2. We note that our definition of the L2-medoid set
corresponds to the ranked tree shape(s) in the sample mini-
mizing the sum of squared distances as opposed to the sum of
distances. In addition, when the sample is replaced by the com-
plete population of ranked tree shapes with n leaves or when
we allow the L2 medoid to belong to the population of trees
but do not require it to be a sampled tree, Eq. 5 corresponds
to the Fréchet mean or barycenter under uniform sampling
probabilities (35).

We use the following as a measure of dispersion around the
medoid for i = 1, 2:

σ2
i :=

1

s

s∑
j=1

d2
i (T i ,T

R
j ). [6]

When the L2 medoid is not unique, the dispersion is defined with
respect to any chosen L2-medoid ranked tree shape from the set
of L2 medoids.
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Similarly, given a finite sample of ranked genealogies
gR

1 , . . . , gR
s with n leaves, the L2-medoid set is defined as

gi := argmin
g∈{gR1 ,...,gRs }

s∑
j=1

[
dw
i (g, gR

j )
]2

[7]

for i = 1, 2, and our empirical measure of dispersion for ranked
genealogies is the mean sum of squared distances to the medoid.

Statistical Comparison of Ranked Tree Shape and Ranked Genealogy
Sampling Distributions. To assess the utility of a metric in distin-
guishing between two different ranked tree shape (or ranked
genealogy) sampling distributions, we propose a nonparamet-
ric test of equality of tree sampling distributions as follows.
Given two sets of independent samples of ranked tree shapes
(or ranked genealogies) from distributions P and Q, we are
interested in testing the null hypothesis H0 : P = Q.

Assume X1, . . . ,XN are independent and identically dis-
tributed (i.i.d.) ranked tree shapes (or ranked genealogies) with
n leaves according to a probability distribution P, and inde-
pendently, Y1, . . . ,YN are i.i.d. ranked tree shapes (or ranked
genealogies) with n leaves according to Q. For a given distance
function d defined on the space of ranked tree shapes (or ranked
genealogies), let X̄ be the L2 medoid of the X1, . . . ,XN sam-
ples and let Ȳ be the L2 medoid of the Y1, . . . ,YN samples, as
defined in Eq. 5. The mean confusion is defined as

C x ,y =
1

2(N − 1)

N∑
j=1

[
1d(Xj ,Ȳ )≤d(Xj ,X̄ ) + 1d(Yj ,X̄ )≤d(Yj ,Ȳ )

]
.

[8]
The closer the value of the mean confusion statistic is to 0, the

more easily the two tree distributions can be distinguished from
each other. The mean confusion as defined in Eq. 8 assumes
the two L2 medoids are unique, each observed only once, and
ignores ties (trees equidistant to X̄ and Ȳ ). When the sample
space of ranked tree shapes is large or when the sample space is
the space of ranked genealogies, the expected value of the mean
confusion statistic under the null hypothesis is close to 0.5. In
SI Appendix, section 4, we define a more general mean confu-
sion statistic that accounts for nonunique L2 medoids and ties.
We note that for our simulations and real data analyses, Eq. 8 is
used since we observe a unique L2 medoid in each ranked tree
shape or ranked genealogy distribution, and no ties are present
in pairwise comparisons.

An α-level test can be constructed for testing the null hypoth-
esis using Nperm random permutations. The permutation P value
is computed as (36)

P =
1 +

∑Nperm
k=1 1C

x ,y
k
≤C x ,y

1 +Nperm
, [9]

where C x ,y
k is a confusion statistic from the k th replicate and

C x ,y is the observed value from data.
For comparing more than two sampling distributions, we com-

pute the confusion matrix C , where entry Ci,j corresponds to
the percentage of trees in the i th sampling distribution that are
closest to the L2 medoid of the j th sampling distribution. Each
row of the confusion matrix sums to 100%, and the diagonal ele-
ments represent the percentage of trees that are closer to the L2

medoid of their originating distribution than L2 medoids of the
other sampling distributions. The average diagonal of the confu-
sion matrix, which we term mean separation, provides a measure
of overall separation between sampling distributions based on
the distance used. It ranges from 0 to 100, with a larger value
indicating better separation between sampling distributions.

Table 1. Summary of distances in the spaces of ranked tree
shapes and ranked genealogies

Tree Original tree
Name space space Reference

d1, d2 Ranked tree Ranked tree This paper
shape shape

dw
1 , dw

2 Ranked Ranked This paper
genealogy genealogy

dBHV-RTS Ranked tree Labeled Billera, Holmes, and
shape genealogy Vogtmann (9)

dBHV-RG Ranked Labeled Billera, Holmes, and
genealogy genealogy Vogtmann (9)

dKC-RTS Ranked tree Labeled Kendall and
shape genealogy Colijn (10)

dKC-RG Ranked Labeled Kendall and
genealogy genealogy Colijn (10)

dCP-RTS Ranked tree Tree shape Colijn and
shape Plazzotta (14)

A brief description of existing distances that are originally defined on
the space of tree shapes and the space of labeled genealogies, and their
adaptations to the spaces of ranked tree shapes and ranked genealogies,
can be found in SI Appendix, sections 5 and 6.

Adapting Other Tree Metrics to Ranked Tree Shapes and Ranked
Genealogies. Although there are no other metrics designed
specifically for ranked tree shapes and ranked genealogies, we
can adapt other tree distances defined on finer or coarser tree
spaces to the space of ranked tree shapes and ranked genealo-
gies, and we can compare them to our metrics. We adapted
metrics that are originally defined on the space of labeled
genealogies—the BHV distance and the KC distance—to the
space of ranked genealogies by artificially assigning uniquely
defined leaf labels to ranked genealogies. The unique assignment
of the leaf labels on a ranked tree shape consists of assigning
labels in increasing index order starting with leaves subtended by
an internal node closest to the tips and ending with leaves sub-
tended closest to the root. For adapting the BHV distance and
the KC distance to the space of ranked tree shapes, we assigned
a unit length to each change point time interval and unique leaf
labels to tips of a ranked tree shape. We also compared our dis-
tances on ranked tree shapes to the CP distance defined on the
space of tree shapes by ignoring internal node labels. Details
of these adaptations can be found in SI Appendix, sections
5 and 6.

We term the adapted BHV, KC, and CP distances on the
space of ranked tree shapes dBHV-RTS, dKC-RTS, and dCP-RTS,
respectively. We denote the adapted BHV and KC distances on
ranked genealogies by dBHV-RG and dKC-RG, respectively. Table 1
shows a summary of the distances defined on the spaces of
ranked tree shapes and ranked genealogies, as used in this
paper.

Results
Having introduced the metrics on the spaces of ranked tree
shapes and ranked genealogies, we first examine the behavior of
our metrics in an illustrative example for n = 5. We then show
their utility in simulated data under various evolutionary models.
Finally, we apply them to analyze real human influenza A/H3N2
virus data.

Interpreting Proposed Distances between Ranked Tree Shapes of
n = 5 Leaves. Before demonstrating the utility of our metrics
in distinguishing different sampling distributions by simulations
and a real data application, as a simple illustrative example,
we first explore our distances on ranked tree shapes of n = 5
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Fig. 3. d1 distances between all pairs of ranked tree shapes of n = 5 leaves.
Rank labels of internal nodes are removed for ease of visualization. There
are three different distance values among the 10 pairs of distances.

leaves—the smallest number of taxa giving a nontrivial space of
ranked tree shapes—and compare them with the adaptations of
other metrics.

In Fig. 3, we show all five possible ranked tree shapes and their
corresponding pairwise d1 distances. Trees TR

2 ,TR
3 , and TR

4 are
trees with the same tree shape but different ranked tree shapes.
The trees in each of the pairs (TR

2 ,TR
3 ) and (TR

3 ,TR
4 ) differ by

one rank switch, and their pairwise distance is d1 = 1. The d1 dis-
tance between the pair (TR

2 ,TR
4 ) is 2; indeed, to go from TR

2 to
TR

4 , we need two rank switches. All pairwise distances are shown
in SI Appendix, Fig. S7.

The pairs (TR
1 ,TR

3 ) and (TR
2 ,TR

5 ) have the maximum d1 dis-
tance. In both cases, we need a rank switch and a change of tree
shapes to move from one tree to the other. The pairs of trees with
the maximum dBHV-RTS distance are the same two pairs with the
maximum d1 distance. However, an additional pair, (TR

2 ,TR
4 ),

also has the same dBHV-RTS maximum, even though TR
2 and TR

4

differ by two rank change events but have the same tree shape.
Qualitative behaviors of distances dKC-RTS among the trees TR

2 ,
TR

3 , and TR
4 mirror d1. dCP-RTS, however, differs in that the trees

TR
2 , TR

3 , and TR
4 are equidistant from TR

5 but not from the cater-
pillar tree TR

1 , whereas, using d1 or d2, all pairwise distances to
the trees TR

2 , TR
3 , and TR

4 from TR
1 or TR

5 are distinct. We also
note that because dCP-RTS is a distance originally defined on tree
shapes, all pairwise dCP-RTS distances between the trees TR

2 ,TR
3 ,

and TR
4 are 0, and all dCP-RTS distances to the trees TR

2 , TR
3 , and

TR
4 from TR

1 or TR
5 have the same value of 2.

Separation between Ranked Tree Shapes with Different Distribu-
tions. Having demonstrated that our proposed metrics, d1 and
d2, effectively differentiate both tree topologies and internal
node rankings in the n = 5 case, we now evaluate by simula-
tion how d1 and d2 can distinguish different ranked tree shape
distributions from models with biological relevance.

We consider isochronous ranked tree shapes from a two-
parameter branching model to which we refer as the alpha–beta-
splitting model (7). These parameters capture two phenomena
that have been widely used for phylogenetic studies. The param-
eter β ∈ [−2,∞), as in the beta-splitting model (37), determines
the degree of balance, an important tree attribute that car-

ries information on underlying evolutionary or epidemiological
processes, including speciation and extinction (38–41), natural
selection (42–45), and infectious disease transmission (46–48).
The other parameter α∈ (−∞,∞) regulates the relationship
between clade family size and proximity to the root (clade size–
age relation), which is fundamental to understanding the effects
of ecological, evolutionary, geographic, and other factors on bio-
diversity (7, 49–52). More details about these models can be
found in SI Appendix, sections 7 and 8.

We evaluate and compare our metrics, d1 and d2, with
the adaptations of other metrics to the space of ranked tree
shapes (Table 1)—dBHV-RTS, dKC-RTS, and dCP-RTS—by the fol-
lowing methods. We summarize each sampling distribution by
the summary statistics, the L2 medoid (Eq. 5) and the disper-
sion (Eq. 6). We then assess the performance of the metrics
in distinguishing different ranked tree shape distributions by
several measures: the confusion matrix, mean separation, and
mean confusion (Eq. 8) and its permutation P value (Eq. 9)
for testing equality between pairs of sampling distributions
(104 permutations). Additionally, for ease of visualization and
interpretation, we use multidimensional scaling (MDS) (53)
to embed our distance metrics into Euclidean spaces of two
dimensions.

Distinguishing Different Tree Balance Distributions. To show how
our proposed metrics can be used to differentiate ranked tree
shapes sampled from distributions with different degrees of tree
balance, we simulated ranked tree shapes under the alpha–
beta-splitting model with different values of the tree balance
parameter (β) while keeping the clade size–age relation parame-
ter (α) fixed. We considered β ∈{−1.9,−1.5,−1, 0, 100}, rep-
resenting a sequence from unbalanced to balanced ranked
tree shapes. We refer to the ranked tree shape distributions
with their corresponding well-known models of speciation: the
Yule model (54, 55) (β= 0), the proportional-to-distinguishable-
arrangements (PDA) model (41) (β=−1.5), and the Aldous
branching (AB) model (40) (β=−1). Additionally, we refer
to β=−1.9 and β= 100 as “unbalanced” and “balanced”,
respectively. We simulated 1,000 ranked tree shapes with
n = 100 leaves for each β value, generating 5,000 simulated
ranked tree shapes. We then computed the pairwise distance
matrices of size 5, 000× 5, 000 with d1, d2, dBHV-RTS, dKC-RTS,
and dCP-RTS.

The confusion matrices displayed in SI Appendix, Table S2
show the greatest mean separation across the five distributions
for d1 and d2: About 83% of the trees are closest to the L2

medoid of their originating distribution with d1 and d2 distances,
70.5% with dKC-RTS, 75.0% with dCP-RTS, and only 20.3% with
dBHV-RTS. Our d1 and d2 distances discriminate tree distributions
with different tree balance parameters to a greater extent than
dBHV-RTS; dCP-RTS and dKC-RTS show more similar performance.

To test for equality in sampling distributions, we computed the
pairwise mean confusions and associated P values. SI Appendix,
Table S3 A and B shows mean confusions computed using our
metrics, d1 and d2. All off-diagonal values are smaller than 0.21
and statistically significant (P < 0.0001). In contrast, compar-
isons with dBHV-RTS and dKC-RTS (SI Appendix, Table S3 C and
D) produce higher pairwise mean confusion values across all
pairs—with off-diagonal values larger than 0.45 with dBHV-RTS
and values between 0.04 and 0.28 with dKC-RTS—and thus, lower
discrimination. Mean confusion values closer to 0 are indicative
of good discrimination. Comparisons with dCP-RTS (SI Appendix,
Table S3E) display similar pairwise mean confusion values and
significance to our distances (all P values are significant at
P < 0.0001).

SI Appendix, Table S1A shows the dispersion statistic for each
tree distribution and for each distance function. The unbal-
anced sample shows the smallest dispersion value (all sampled
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Fig. 4. MDS representation of distances between 5,000 simulated
isochronous ranked tree shapes of n = 100 leaves, aggregated from five
different beta-splitting models. A total of 1,000 isochronous ranked tree
shapes were simulated from each of the following models: balanced model
(β= 100), Yule model (β= 0), Aldous branching (AB) model (β=−1),
proportional-to-distinguishable-arrangements (PDA) model (β=−1.5), and
unbalanced model (β=−1.9). (A) MDS of the d1 metric. (B) MDS of the
d2 metric. (C) L2-medoid trees from each distribution using the d1 metric.
(D–F) MDS plots for (D) dBHV-RTS, (E) dKC-RTS, and (F) dCP-RTS. In each MDS plot,
the triangle represents the L2-medoid tree of 1,000 points for a specified
model.

trees are closer to each other) with our distances and dBHV-RTS,
whereas, with dKC-RTS and dCP-RTS, it displays the largest dis-
persion value (more separation among trees within the same
distribution).

Our findings are confirmed visually through the MDS plots dis-
played in Fig. 4. In the MDS plots, each dot corresponds to a
tree, and each color corresponds to the sampling distribution for
a specified β value. Fig. 4C shows the L2-medoid trees using our
d1 distance. The total distances explained by the first two MDS
dimensions are 91.4% using d1 (Fig. 4A) and 94.4% using d2

(Fig. 4B). The two-dimensional MDS mappings using the other
distances explain less than 80%.

Distinguishing Different Internal Node Ranking Distributions. To
show how our proposed metrics can be used to differentiate
ranked tree shapes sampled from distributions with different
internal node rankings, we generated 1,000 random trees from
the alpha–beta-splitting model with n = 100 tips, fixed β= 0,
and varying values of α in {−2,−1, 0, 1, 2}, producing 5,000
total trees. By varying the value of α while keeping the bal-
ance parameter (β) fixed, we test the performance of our metrics
in distinguishing between ranked tree shapes with small family
sizes closer to the root (α< 0) and ranked tree shapes with small
family sizes closer to the tips (α> 0).

The confusion matrices displayed in SI Appendix, Table S4
show greater mean separation for d1 and d2 than for any of the
other distances. More than 75% of the trees are closest to the L2

medoid of their originating distributions with d1 and d2, and less
than 35% have this property with the other distances.

The pairwise mean confusions computed using d1 and d2 (SI
Appendix, Table S5 A and B) have values strictly smaller than the
mean confusions computed with the other distances. All compar-
isons with our distances are statistically significant (P < 0.0001),
indicating good distinguishability of distributions with different
α values.

The dispersion statistics in SI Appendix, Table S1B indicate
that, according to our d1 and d2 metrics, trees from the alpha–
beta-splitting model with α= 0 are the most dispersed group
among the five α values considered. This, however, is not the
case with the other distances. In particular, no variations in dis-
persion across different distributions are observed using dCP-RTS,
and a positive correlation between α and dispersion is seen with
dBHV-RTS.

Our two-dimensional MDS representations confirm the find-
ings observed in the confusion matrix and mean confusions: d1

and d2 (Fig. 5 A and B), when compared to the other three met-
rics (Fig. 5 D–F), distinguish to a greater extent between trees
with positive and negative α parameters. In addition, our d1 and
d2 distances show tighter embeddings in two-dimensional MDS,
with a high proportion of the total distance explained. Although
the MDS visualizations in Fig. 5 A and B show that most clusters
of trees are well separated according to their sampling distribu-
tions with d1 and d2, a large overlap exists between groups of
trees with α= 1 and α= 2. The observed similarity is evident
from the L2-medoid trees (Fig. 5C).
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Fig. 5. MDS representation of distances between 5,000 simulated
isochronous ranked tree shapes of n = 100 leaves, aggregated from five dif-
ferent alpha–beta-splitting models. A total of 1,000 isochronous ranked tree
shapes were simulated for each α value in {−2,−1, 0, 1, 2}. Different α val-
ues generate different distributions of internal node ranking while keeping
the same tree shape distribution at β= 0. (A) MDS of the d1 metric. (B) MDS
of the d2 metric. (C) L2-medoid trees from each distribution using the d1

metric. (D–F) MDS plots for (D) dBHV-RTS, (E) dKC-RTS, and (F) dCP-RTS. In each
MDS plot, the triangle represents the L2-medoid tree of 1,000 points for a
specified model.
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Our results confirm that our metrics capture both tree bal-
ance and clade size–age relation more effectively than the
other adapted metrics on ranked tree shapes, in that simu-
lation models differing in these features are more easily dis-
criminated with our distances than with the others. To further
demonstrate this point, we simulated 1,000 trees in each of
the varying tree balance and internal node rankings: (α,β) =
(−1, 0), (−1,−1.5), (1, 0), (1,−1.5). The groups with the same
β value share the same tree balance distribution, and the groups
with the same α value share the same internal node ranking dis-
tribution. In SI Appendix, Table S6 and Fig. S8 show that d1

and d2 effectively separate all four distributions, while dKC-RTS
and dCP-RTS, designed to measure differences in tree shapes only,
separate tree distributions with the same tree balance but with
different internal node rankings less effectively.

Separation between Ranked Genealogies with Different Distribu-
tions. Having investigated the utility of our metrics in separating
different ranked tree shape distributions, we now demonstrate
our metrics on the space of ranked genealogies. We consider
two scenarios with evolutionary and epidemiological impor-
tance: isochronous ranked genealogy distributions resulting from
different demographic histories and heterochronous ranked
genealogies inferred from human influenza A/H3N2 virus data
from two geographical regions. We evaluate and compare our
metrics, dw

1 and dw
2 , with the adaptations of other metrics to the

space of ranked genealogies (Table 1)—dBHV-RG and dKC-RG—
using the same measures we employed in the previous section.
We note that there is no adaptation of the CP metric to the space
of ranked genealogies, as the CP metric is defined on the space of
tree shapes and, thus, does not incorporate tree branch lengths.

Distinguishing Different Demographic Histories. We assess how our
proposed weighted metrics can differentiate genealogies with
different branch length distributions. In coalescent models, the
rate of coalescence (or branching) depends on the effective
population size λ(t), as shown in Eq. 10. Under the neutral coa-
lescent, the tree topology distribution (SI Appendix, Eq. S2) is
independent of the branch lengths (see Materials and Methods for
details). To investigate the performance of our weighted metrics
dw

1 or dw
2 on genealogies in separating trees according to their

branch length distribution, we generated 1,000 random ranked
genealogies with n = 100 leaves from the Tajima coalescent with
each of the following demographic scenarios:

1) Constant effective population size λ(t) =N0;
2) Exponential growth λ(t) =N0e

−0.01t ;
3) Seasonal logistic trajectory

λ(t) =


0.1N0 +

0.9N0

1 + exp [6− 2(t mod 12)]
(t mod 12)≤ 6,

0.1N0 +
0.9N0

1 + exp [−18 + 2(t mod 12)]
(t mod 12)> 6.

The coalescent trees under each specified population trajectory
were simulated with N0 = 104. The functional form and param-
eter values chosen for the seasonal logistic trajectory mimic
estimated trajectories of human influenza A virus in temperate
regions (56). We removed the leaf labels and retained branch
lengths to produce isochronous ranked genealogies. We pro-
duced pairwise distance matrices of 3, 000× 3, 000 using the
weighted metrics dw

1 and dw
2 .

The dispersion statistics in SI Appendix, Table S9A show that
the sampled genealogies under the constant population size
trajectory have the greatest dispersion, and the sampled genealo-
gies under the exponential growth trajectory have the least
dispersion.

Our metrics’ ability to distinguish different demographic
scenarios is evident in the confusion matrix in SI Appendix,
Table S10, where they display good performance. Across all
three distributions, 99.8% of the trees are closest to the L2

medoid of their originating distribution with dw
1 and dw

2 ; cor-
responding values are 33.4% with dBHV-RG and 74.0% with
dKC-RG.

To test for equality in sampling distributions, we computed the
mean confusion statistics and P values. In SI Appendix, Table S11
A and B displays all off-diagonal mean confusion statistics
that are less than 0.002 and are statistically significant (P <
0.0001) with dw

1 and dw
2 , indicating a high level of discrimination

between ranked genealogy distributions with different demo-
graphic histories. The mean confusions computed with dBHV-RG
and dKC-RG have far higher values than the values with dw

1 and dw
2

(SI Appendix, Table S11 C and D).
The two-dimensional MDS plots, Fig. 6 A and B, display that

our weighted metrics distinguish the three simulated ranked
genealogy distributions, visually confirming the same finding
using the confusion matrix and the mean confusion statistic.
The first two dimensions of MDS account for 72.1% of the
total distance, with the first MDS coordinate separating the
constant trajectory from the others and the second coordinate
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Fig. 6. MDS representation of distances between 3,000 simulated
isochronous ranked genealogies of n = 100 leaves under different demo-
graphic models. The number of simulated genealogies per population
model is 1,000. (A) dw

1 metric. (B) dw
2 metric. (C) L2-medoid genealogies from

each distribution using the dw
1 metric. (D) dBHV-RG. (E) dKC-RG.
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distinguishing the exponential trajectory from the logistic trajec-
tory. A comparison of panels within Fig. 6 shows that dBHV-RG is
far less informative than either of our metrics.

Analysis of Human Influenza A/H3N2 Virus from Different Geograph-
ical Regions. We next apply our metrics to ranked genealogies
sampled from the posterior distributions of human influenza
A/H3N2 genealogies of hemagglutinin (HA) gene sequences
from two geographic regions—New York and Southeast Asia. In
temperate climates, such as New York, influenza epidemics dis-
play seasonality, with peaks occurring during the winter months,
whereas in regions with tropical or subtropical climates, such as
Southeast Asia, influenza activity persists throughout the year
(57). We reanalyzed a subset of the sequences used in a previous
study of Bahl et al. (58) that showed patterns of seasonal dynam-
ics of influenza in New York and stable dynamics in Southeast
Asia. We use our metrics to assess the differences in genealogical
posterior distributions between the two regions.

The frequency of the collected samples by collection date and
the estimated effective population size trajectories (Fig. 7) show
distinct patterns consistent with those in Bahl et al. (58): a sea-
sonal effective population size trajectory in New York that peaks
during the winter seasons and a flat effective population size
trajectory in Southeast Asia.

For each geographical region, we sampled 1,000 ranked
genealogies per region from posterior distributions obtained
from BEAST. We refer to the resulting samples from New York
and Southeast Asia as NY–NY and SEA–SEA, respectively.

To investigate the effect of the different sampling schedules,
we simulated two additional groups of 1,000 trees: one with fixed
New York sampling schedule (Fig. 7A) and Southeast Asia esti-
mated effective population size trajectory (Fig. 7D) and the other
with fixed Southeast Asia sampling schedule (Fig. 7B) and New
York estimated effective population size trajectory (Fig. 7C). We
denote the former by NY–SEA and the latter by SEA–NY.

We then aggregated the 4,000 ranked genealogies—1,000 from
each of NY–NY, SEA–SEA, NY–SEA, and SEA–NY—and
computed pairwise distance matrices of 4, 000× 4, 000 with dw

1 ,

dw
2 , dBHV-RG, and dKC-RG. The corresponding confusion matri-

ces (SI Appendix, Table S12) show that dw
1 and dw

2 have good
performance in discriminating all four distributions, both with
mean separation of 99.9%, while dBHV-RG and dKC-RG display
less discrimination, with mean separations of 28.9 and 65.6%,
respectively.

As shown in SI Appendix, Table S13 A and B, the observed
mean confusion statistics between all sampling distribution pairs
with our distances are near zero and statistically significant (P <
0.0001). While all observed off-diagonal mean confusion values
with dKC-RG (SI Appendix, Table S13D) are larger than the values
with dw

1 or dw
2 , all P values are significant, showing somewhat

comparable performance with our distances. The test of equal-
ity in sampling distributions is not rejected at the significance
level of 5% with dBHV-RG between the pair (NY–SEA, NY–
NY) and between the pair (SEA–NY, NY–NY) (SI Appendix,
Table S13C).

Fig. 8 A and B shows that all four distributions with different
sampling and evolutionary histories are also well separated in the
two-dimensional MDS plots using dw

1 and dw
2 . However, we note

that the first two dimensions of MDS account for only 51.7%
(dw

1 ) and 50.5% (dw
2 ) of the total distance.

SI Appendix, Table S9B displays the dispersion values com-
puted with all distances on ranked genealogies. In particular,
SEA–SEA ranked genealogies with relatively uniform sam-
pling history and evolutionary trajectory have larger dispersion
compared to the other distributions. The large dispersion of
SEA–SEA ranked genealogies is consistent with the simulated
results in Fig. 6 and SI Appendix, Table S9A, where the distri-
bution of isochronous ranked genealogies with constant popula-
tion size trajectory has larger dispersion than distributions with
exponential or seasonal logistic trajectory.

Our proposed distances confirm that the HA segments of
human influenza A/H3N2 experienced different evolutionary
processes in New York and Southeast Asia between 2001 and
2005. While different sampling schedules of different datasets
may obfuscate signals of underlying evolutionary dynamics
in the application of our distances, we note that in this
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Fig. 7. Human influenza A/H3N2 virus collection dates and inferred effective population size trajectories. (A) Collection date histogram, New York.
(B) Collection date histogram, Southeast Asia. (C) Inferred effective population size trajectory with BEAST, New York. (D) Inferred effective population
size trajectory with BEAST, Southeast Asia.
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Fig. 8. MDS representation of distances between 4,000 heterochronous
ranked genealogies sampled from two posterior distributions (1,000 trees
from each distribution) and two sets of simulated trees (1,000 trees from
each simulation). Observed data consist of 122 HA sequences of human
influenza A/H3N2 virus from each geographic region, New York (NY–NY)
and Southeast Asia (SEA–SEA). An additional two sets of trees were sim-
ulated using sampling times of New York and the effective population size
trajectory of Southeast Asia (NY–SEA) and using sampling times of Southeast
Asia and the effective population size trajectory of New York (SEA–NY). (A)
dw

1 metric. (B) dw
2 metric. (C) L2-medoid trees from each distribution using

the dw
1 metric. (D) dBHV-RG metric. (E) dKC-RG metric.

particular analysis, sampling frequencies are highly correlated
with effective population sizes and are thus informative about
the underlying evolutionary processes. This situation of prefer-
ential sampling (59–61) is common in molecular phylodynamic
studies of influenza viruses: More samples are sequenced when
the effective population size is larger.

Convergence Diagnostic. In the previous section, we compared
posterior samples of ranked genealogies derived from MCMC
procedures that introduce correlation in the samples. Although
we thinned our posterior samples, it is important to test the
mixing of the Markov chains. We used our metrics to assess
convergence of each of the three MCMC chains for the two
geographical regions. We computed the distance between the
running posterior L2-medoid ranked genealogy and the global
posterior L2-medoid ranked genealogy after every 105 iter-
ations for each chain. That is, in each chain, we sampled
1,000 ranked genealogies from the posterior distribution so
that the k th sample gR

k corresponds to iteration k × 105 of the
chain. For each k = 1, . . . , 1000, we computed a running L2-
medoid ḡk of all samples up to and including the k th ranked
genealogy using our metric. We then computed distances from
the running L2 medoids ḡk (k = 1, . . . , 1,000) to the overall
L2 medoid of all of the 1,000 sampled ranked genealogies
ḡ (=ḡ1,000).
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Fig. 9. Assessment of convergence of MCMC BEAST chains. Each curve cor-
responds to the distance between the running posterior L2-medoid ranked
genealogy and the global posterior L2-medoid ranked genealogy after every
105 iterations for each chain. (A) New York, dw

1 . (B) New York, dw
2 . (C)

Southeast Asia, dw
1 . (D) Southeast Asia, dw

2 .

Fig. 9 shows dw
i (ḡk , ḡ) (i = 1, 2) as a function of the chain

iteration index for the three independent runs for each geo-
graphical region. The initial variability of the running-mean plot
is relatively high, but, after an initial burn-in period (≈10%),
the distance from the running mean to the overall mean sta-
bilizes quickly with an increasing number of states indicating
convergence.

Discussion
Ranked tree shapes and ranked genealogies are used to model
the dependencies between samples of molecular data in the
fields of population genetics and phylogenetics. These tree
structures have a particular value in studying heterochronous
data and in providing a resolution that is fine enough to be
informative but is computationally more feasible than finer
resolutions.

In this article, we equipped the spaces of ranked tree shapes
and ranked genealogies with a metric. By defining a bijection
between ranked tree shapes and a triangular matrix of inte-
gers, we defined distance functions between ranked tree shapes
as the L1 and L2 norms of the difference between two matri-
ces. Our distances on ranked genealogies are the L1 and L2

norms of the difference between two matrices weighted by the
genealogy branch lengths. To apply our distances to real data for
comparing ranked genealogies or ranked tree shapes with dif-
ferent sampling events, we proposed an augmentation scheme,
increasing the dimension of the matrix representations, and
we defined our distances as L1 and L2 norms of the differ-
ence between extended matrices of the same size. We used
our distances to summarize the distribution of trees and pro-
posed using the L2-medoid tree set, a sample version of the
Fréchet mean, as the central set of a sample of trees. We
proposed a sample version of the Fréchet variance to quan-
tify uncertainty. We demonstrated the utility of our metrics
using simulated data from models with biological relevance and
human influenza A/H3N2 virus between temperate and tropical
regions.

The performance of the proposed metrics was evaluated
through their ability to distinguish different tree distributions
quantified by the confusion matrix, mean separation, and mean
confusion statistic. We statistically assessed equality in distri-
butions with a nonparametric test. This feature is particularly
relevant where analytic expressions for underlying probability
distributions are unknown. We note that our nonparametric test
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assumes samples are independent, and a future direction is to
account for the nonindependence of samples. Another impor-
tant future direction is to develop statistical tests based on our
metrics for uncovering specific evolutionary events, for example,
inferring mode and strength of natural selection and identi-
fying specific genomic regions undergoing selective pressure,
beyond detecting differences in evolutionary histories from tree
distributions.

Our metrics provide the basis for a decision-theoretic statisti-
cal inference that can be constructed by finding the best-ranked
genealogy that minimizes the expected error or loss function,
which, in turn, is a function of the tree distance. Further, our
proposed metric provides a tool for evaluating convergence
and the mixing of MCMC procedures on ranked genealogies.
We demonstrate the applicability of our metrics as an MCMC
convergence diagnostic with influenza data.

Our proposed distances inherit the properties of L1 and L2

norms, but other higher-order norms can also be applied to our
matrix representation of ranked tree shapes. In general, the L2

norm magnifies large differences more than the L1 norm. Under
the scenarios we investigated, no noticeable dissimilarities were
observed between L1- and L2-based metrics in assessing different
tree distributions, but L2-based metrics overall provided better
two-dimensional MDS embeddings by the distortion measure
(SI Appendix, section 11 and Table S15). For general scenarios
beyond those we examined, while we expect both d1 and d2 (dw

1

and dw
2 ) would perform similarly well in distinguishing tree dis-

tributions, rigorous theoretical investigations of their properties
will be needed.

We note that our matrix representation can be modified to a
symmetric positive definite (SPD) matrix by replacing the upper
matrix triangle with the transposed entries of the original lower
triangular matrix. In this case, our new distance will be twice
the original distance and will not change the observed proper-
ties. This view of an SPD matrix representation of ranked tree
shapes will make it possible to explore additional distances (62)
on ranked tree shapes and ranked genealogies.

Materials and Methods
Random Ranked Tree Shape Generation. To generate random isochronous
ranked tree shapes, we used the simulate tree function in the R package
apTreeshape (7) with the following parameters. In distinguishing differ-
ent tree balance distributions, we simulated 1,000 ranked tree shapes
with n = 100 leaves for each β value in {−1.9,−1.5,−1, 0, 100} with
fixed α= 1. In distinguishing different internal node ranking distribu-
tions, we simulated 1,000 ranked tree shapes with n = 100 leaves for
each α value in {−2,−1, 0, 1, 2} with fixed β= 0. All other parameters
were kept at their default values. Heterochronous ranked tree shapes with
different sampling events were generated using phylodyn::coalsim (63)
in R.

Random Ranked Genealogy Generation. For all our simulations, we assume
neutral evolution. Hence, the distribution of branching or coalescence wait-
ing times depends on the number of extant branches and is independent
of the particular topology. In the isochronous coalescent model, when there
are k lineages, the coalescent time tk backward in time from tips to root
(Fig. 2A) has conditional density

f(tk | tk+1) =

(k
2

)
λ(tk)

e
−
(

k
2

) ∫ tk
tk+1

dt
λ(t) , for k = n, . . . , 2, [10]

where λ(t)> 0 is the effective population size at time t and tn+1 = 0. In the
heterochronous coalescent, sampling times are deterministic and the rate
of coalescence depends on the number of extant lineages and the effective
population size λ(t). More details about coalescent models can be found in
SI Appendix, sections 9 and 10.

We used phylodyn::coalsim (63) in R to generate random isochronous
ranked genealogies with different branch length distributions and random
heterochronous ranked genealogies with different sampling events and
different branch length distributions.

Comparison with Other Metrics. For comparing our metrics to adaptations of
other tree distances, we used the Geodesic Treepath Problem (GTP) software
implemented in Java (31) for the BHV distance, multiDist implemented in
the R package treespace (10) for the KC distance, and the vecMultiDistUnlab
in the R package treetop (14) for the CP distance.

Human Influenza A/H3N2 Virus Analysis. We selected 122 complete HA
sequences at random with overlapping collection dates between New
York and Southeast Asia—from January 2002 to September 2005. The
National Center for Biotechnology Information (NCBI) GenBank accession
numbers for the 122 HA sequences from New York and Southeast Asia
used in this article are provided in SI Appendix, Table S14. We aligned
the sequences using the FFT-NS-i option of Multiple Alignment using Fast
Fourier Transform (MAFFT) v7.427 software (64, 65).

We used BEAST v1.10.4 (16) to sample from the posterior distribution
of model parameters with the following prior settings: Shapiro–Rambaut–
Drummond codon-partition substitution model (66) to accommodate rate
heterogeneity among sites, the uncorrelated log-normal relaxed molecular
clock, and a time-aware Bayesian Skyride prior model (67) on evolutionary
histories. For each geographical region, we ran three independent MCMC
chains with 100 million steps, with 10% of burn-in, and thinned to obtain a
total of 1,000 samples per region. We assessed convergences and effective
sample sizes of the estimates using Tracer v1.7.1 (68) and with our distances.

Code and Data Availability. An implementation of our metrics is available
at https://github.com/JuliaPalacios/phylodyn. The NCBI GenBank accession
numbers for the human influenza A/H3N2 HA sequences are provided in
SI Appendix, Table S14.
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