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Supporting Information Text

1. Proof of Theorem 1

Proof. Consider a ranked tree shape TR with n leaves sampled at m different sampling times. We denote the total number of
change points in TR by r = n + m − 1 and its ordered change point times by (ur, ur−1, . . . , u1), 0 = ur < ur−1 < · · · < u1,
with time increasing into the past (rootward). The internal nodes of TR are labeled by the indices of their coalescent times,
and all leaves of TR are labeled by the indices of their sampling times. We note that for convenience, internal nodes are no
longer labeled 2, . . . , n from the root to leaves, but they are labeled by their time-event indices (see Figure S1). Each internal
node has a unique label, but the leaf nodes with the same sampling time share the same label. We define N = {1, . . . , r} to be
a set of all node labels, I to be a set of all internal node labels, and S to be a set of all leaf node labels. Note that I and S are
disjoint and contain n− 1 and m elements, respectively.

For i ∈ I, let oi = (xi,1, xi,2) denote the ordered pair of labels of the two immediate descendants of internal node i, such that
i < xi,1 ≤ xi,2. We denote the set of all pairs i and oi = (xi,1, xi,2) choices in TR by X = {(i, oi) | i ∈ I}. Then X completely
specifies TR: TR is a directed graph from the root to tips and X encodes its adjacency matrix and the order of the internal
node indices i ∈ I determines internal node rankings.
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Fig. S1. Example of φ mapping. (A) An example isochronous ranked tree shape. The set of internal node labels is I = {1, 2, 3, 4, 5, 6, 7} and the set of leaf node labels is
S = {8}. For convenience, internal nodes are labeled by their time-event indices throughout the proof. The internal node with label 2 at time u2 has descendant nodes 3 and
7 at time u3 and u7, respectively (o2 = (3, 7)). The column vector φ(2, o2 = (3, 7)) = (0, 2, 1, 1, 1, 1, 0) indicates the number of direct descendants of node 2 at each
change point time interval. (B) An example heterochronous ranked tree shape. The set of internal node labels is I = {1, 2, 3, 4, 6, 7, 8} and the set of leaf node labels
is S = {5, 9, 10, 11}. The internal node with label 3 at time u3 has descendants node 4 and node 5 at time u4 and u5, respectively (o3 = (4, 5)). The column vector
φ(3, o3 = (4, 5)) = (0, 0, 2, 1, 0, 0, 0, 0, 0, 0) indicates the number of direct descendants of node 3 at each change point time interval.

We define a function φ : X → {0, 1, 2}r−1 as follows:

φk(i, oi) =


0 if 1 ≤ k < i

2 if i ≤ k < xi,1

1 if xi,1 ≤ k < xi,2

0 if xi,2 ≤ k < r.

The kth element of φ(i, oi) is the number of immediate descendants of an internal node i present at the time interval (uk+1, uk).
φ is an injective map. To prove this, let (s, os) and (t, ot) be two elements in X and let (s, os) 6= (t, ot). Because internal nodes
of TR are ranked, (s, os) 6= (t, ot) implies s 6= t; without loss of generality, assume s < t. By the definition of the map φ, the
sth element of φ(s, os) is φs(s, os) = 2, while the sth element of φ(t, ot) is φs(t, ot) = 0 because s < t and t < xt,1 ≤ xt,2. Thus,
φ(s, os) 6= φ(t, ot) and φ is injective.

Let η : {1, . . . , r − 1} × {0, 1, 2}r−1 → {0, 1, 2}r−1 such that for y ∈ {0, 1, 2}r−1, the jth element of η is

η(k,y)j =
{

0 if 1 ≤ j < k

yj if k ≤ j < r.

That is, η(k,y) sets all the first k − 1 entry values of y to 0. Note that the first i− 1 elements of φ(i, oi) are 0 by definition
and thus, η(i, φ(i, oi)) = φ(i, oi).

Finally, for TR ∈ T Rn , define ψ : T Rn → Mr−1,r−1(R), a function that maps a ranked tree shape with n leaves to a real
valued square matrix of size r − 1, with kth column:

ψ(TR)·,k =
∑
i∈I,
i≤k

η(k, φ(i, oi)),
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where ψ(TR)·,k indicates the kth column of ψ(TR) and I is the set of all internal node labels as defined at the beginning of this
section. By the definition of η, the first k − 1 values of the kth column ψ(TR)·,k are 0, i.e., ψ(TR) is a lower triangular matrix.
Because φ records the number of immediate descendants of a single internal node present at each time interval, ψ(TR)·,k tracks
the sum of all surviving immediate descendants of internal nodes with labels i ≤ k starting from time interval (uk+1, uk); thus,
ψ(TR)s,k, with k ≤ s, represents the number of lineages of TR in (uk+1, uk) that are still present at the time interval (us+1, us).

We prove that ψ is an injective map. Let TR1 , TR2 ∈ T Rn and TR1 6= TR2 . Because X = {(i, oi) | i ∈ I} completely specifies
TR, TR1 6= TR2 implies that there exists an index ` ∈ {1, . . . , n− 1} such that (i(1)

` , o
(1)
i`

) 6= (i(2)
` , o

(2)
i`

). Here, i` indicates the `th
element of I sorted in increasing order. If there is more than one such index, choose ` to be the smallest of them. Without loss
of generality, let i(1)

` ≤ i
(2)
` . Then ψ(TR1 )·,i(1)

`

6= ψ(TR2 )·,i(1)
`

and thus ψ(TR1 ) 6= ψ(TR2 ).

Hence, ψ maps each ranked tree shape TR to a unique matrix, i.e., given an F-matrix, if it encodes a ranked tree shape, it
encodes exactly one ranked tree shape.

2. Proof of Proposition 2

Proof. To prove that dwk , k = 1, 2, is a metric, we need to prove the following properties hold for any ranked genealogies
gR1 ,gR2 ,gR3 with n leaves:

dwk (gR1 ,gR2 ) ≥ 0 non-negativity

dwk (gR1 ,gR2 ) = dwk (gR2 ,gR1 ) symmetry

dwk (gR1 ,gR2 ) = 0 ⇐⇒ gR1 = gR2 identity

dwk (gR1 ,gR2 ) ≤ dwk (gR1 ,gR3 ) + dwk (gR3 ,gR2 ) triangle inequality.

The non-negativity and symmetry are trivial. The triangle inequality follows from the Minkowski inequality of L1 and L2 norms.
It remains to prove the identity property: dwk (gR1 ,gR2 ) = 0 if and only if gR1 = gR2 for k = 1, 2. It is clear that dwk (gR1 ,gR2 ) = 0
if gR1 = gR2 so we focus on gR1 = gR2 if dwk (gR1 ,gR2 ) = 0. The following proof is for dw1 . The proof for dw2 follows the same
arguments.

We assume that the two genealogies have the same number of sampling events m and same number of leaves n, so that
the F-matrices of gR1 and gR2 have the same dimension (n+m− 2)× (n+m− 2) dimension. We define r = n+m− 2 for
notational simplicity.

Because we allow only a single event at each change time point ui, either coalescent or sampling, the first column of any
F-matrix is (2, 1, . . . , 1) or (2, 1, . . . , 1, 0, . . . , 0). For the latter, we denote the row index of the last occurrence of 1 in the first
column by k1: F (`)

k1,1 = 1 and F (`)
k1+1,1 = 0 for some index 2 ≤ k1 ≤ r and ` = 1, 2.

If F(1) and F(2) have different first columns, then for some index k1 ≥ 2, (F (1)
k1,1, F

(2)
k1,1) = (0, 1) or (F (1)

k1,1, F
(2)
k1,1) = (1, 0).

Because
∣∣∣F (1)
i,j W

(1)
i,j − F

(2)
i,j W

(2)
i,j

∣∣∣ ≥ 0, dw1 (gR1 ,gR2 ) = 0 implies F (1)
i,j W

(1)
i,j = F

(2)
i,j W

(2)
i,j for all i, j. Therefore, W (2)

k1,1 = 0 in the first

case and W (1)
k1,1 = 0 in the second case. However, this contradicts our assumption of positive time interval between two change

points, and thus F(1) and F(2) must have the same first column.
If both F-matrices share the same first column, then dw1 (gR1 ,gR2 ) = 0 implies W (1)

i,1 = W
(2)
i,1 for all i = 1, . . . , r. Recalling

Wi,j = uj − ui+1, we have u(1)
1 − u(1)

i+1 = u
(2)
1 − u(2)

i+1. Because we assume u(1)
r+1 = u

(2)
r+1 = 0, we can traverse through i in

decreasing order starting from i = r to get u(1)
i = u

(2)
i for all i = 1, . . . , r + 1, which gives W(1) = W(2).

Along with W(1) = W(2), F (1)
i,j W

(1)
i,j = F

(2)
i,j W

(2)
i,j implies F (1)

i,j = F
(2)
i,j for all i, j, i.e., F(1) = F(2), and thus gR1 = gR2 .

3. Metric spaces on heterochronous trees with different numbers of sampling events

We extend our distances to include cases in which the numbers of sampling events differ but the total number of samples
remains the same.

Consider two heterochronous ranked tree shapes of n leaves, TR1 and TR2 , with different numbers of sampling events m1
and m2, respectively. In order to compute the distance between TR1 and TR2 with our metrics, we require the two ranked tree
shapes to be represented as F-matrices of the same dimension. We accomplish this by inserting artificial sampling events. The
detailed steps are as follows. Note that the following formulation is done going backwards in time with time increasing from
the present to the past.

For i = 1, 2, let E(i) = (e(i)
mi+n−1, . . . , e

(i)
1 ) be the vector of ordered sampling and coalescence events where e(i)

mi+n−1 denotes
the most recent sample event (e(i)

mi+n−1 = s) assumed to occur at time u(i)
mi+n−1 = 0. e(i)

1 = c denotes the coalescent event at
time u(i)

1 corresponding to the most recent common ancestor of the samples in TRi . Each e(i)
j is either a sampling event (e(i)

j = s)
or a coalescent event (e(i)

j = c). The event of type c occurs n− 1 times and the event of type s occurs mi times in E(i). In the
example illustrated in Figure S2, the event vectors for TR1 (Figure S2(A)) and TR2 (Figure S2(B)) are E(1) = (s, c, s, c, s, c) and
E(2) = (s, s, s, c, s, c, c), respectively.
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Fig. S2. Example of augmented F-matrix representation of ranked tree shapes. In order to compute the d1 or d2 distances between ranked tree shapes with equally
many samples but different numbers of sampling events, such as ranked tree shapes (A) and (B), we insert artificial sampling events with 0 samples in order to match their
dimension. (A)-(B) Two ranked tree shapes of 4 samples with different sampling events. (C) Alignment of event vectors of two trees. The n− 1 coalescent events are aligned
first by matching ith coalescent event of a tree to the ith coalescent event of the other tree (i = 1, . . . , n− 1). The sampling events are then matched by increasing index
order in the event vector. (D) Augmentation of artificial sampling events a between coalescent events or between the first sampling and the first coalescent event. (E)-(F)
Augmented ranked tree shapes. (G)-(H) Augmented F-matrix representations.

We first align all n − 1 coalescent events between the two trees by adding empty spaces when needed as depicted in
Figure S2(C). Once all the type-c events are aligned, we next align the sampling events between two successive coalescent
events or between t = 0 and the first c event. When aligning the events of type s between the two trees, we pair the events of
type s, starting from the most recent events. The event vector alignment is demonstrated in Figure S2(C). If one tree has more
type-s events than the other in a given intercoalescent interval, we insert the excess artificial sampling events, denoted by a’s,
in the tree with fewer type-s events in that interval. We assign 0 new samples to type-a events. For example, in the tree of
Figure S2(A), there is only one sampling event before the first coalescent event, whereas there are three sampling events in the
tree of Figure S2(B). In Figure S2(D), we illustrate how the two artificial sampling events are added to the first tree in the
first interval. The resulting augmented trees are shown in Figures S2(E) and (F) along with their corresponding F-matrix
representations in Figures S2(G) and (H). We note that by construction, F(1) 6= F(2) in these cases. Hence, di(TR1 , TR2 ) 6= 0 for
i = 1, 2.

Consider now two heterochronous ranked genealogies of n leaves, gR1 and gR2 , with different number of sampling events m1
and m2 respectively. In order to compute the distance between gR1 and gR2 we first augment their F-matrix representations as
with ranked tree shapes. In addition, we augment their weight matrices W (1) and W (2) by assigning a time to each augmented
artificial sampling event. If na artificial events are inserted between events e(i)

j+1 and e
(i)
j , we subdivide the corresponding

time interval [u(i)
j+1, u

(i)
j ] into na + 1 intervals with equal length: the times assigned to the na augmented artificial events are

{u(i)
j+1 + ∆, u(i)

j+1 + 2∆, . . . , u(i)
j+1 + na∆}, where ∆ =

u
(i)
j
−u(i)

j+1
na+1 .
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4. Statistical comparison of ranked tree shape and ranked genealogy sampling distributions

We generalize the mean confusion statistics for cases when the L2-medoid is not unique. This more general version is more
appropriate for small sample spaces such as ranked tree shapes with small number of leaves.

For a given distance function d defined on the space of ranked tree shapes (or ranked genealogies), let X̄ be the L2-medoid
set of the X1, . . . , XN samples and let Ȳ be the L2-medoid set of the Y1, . . . , YN samples, as defined in Equation 5. The
generalized mean confusion is defined as:

Cx,yG = 1
2

N∑
j=1

[
1minȲ {d(Xj ,Ȳ )}≤minX̄{d(Xj ,X̄)}

1
N − |X̄|

+ 1minX̄{d(Yj ,X̄)}≤minȲ {d(Yj ,Ȳ )}
1

N − |Ȳ |

− Zxj 1minX̄{d(Xj ,X̄)}=minȲ {d(Xj ,Ȳ )}
1

N − |X̄|

− Zyj 1minX̄{d(Yj ,X̄)}=minȲ {d(Yj ,Ȳ )}
1

N − |Ȳ |

]
, [S1]

where Zxj and Zyj are i.i.d. Bernoulli random variables with probability 0.5 to resolve ties.

5. Adapting other tree metrics to ranked tree shapes and ranked genealogies

A. Other distances on ranked tree shapes. We start with two adaptations of metrics that are originally defined on the space of
labeled genealogies: the BHV distance and the KC distance.

The Billera-Holmes-Vogtmann metric (BHV) metric. The BHV space (1) is obtained by representing each labeled genealogy gLn with
n leaves and edge set E by a vector in the Euclidean orthant R2n−1

+ , whose coordinates correspond to edge lengths. The BHV
space is the union of (2n− 3)!! orthants. The BHV distance (dBHV) between two labeled genealogies is defined as a geodesic,
the shortest path connecting two points that lies inside the BHV space. Note that unranked and labeled genealogies with
positive intervals between coalescent and sample times are effectively ranked and labeled genealogies. To adapt the BHV
distance to the space of ranked tree shapes, we define a modified BHV metric, dBHV-RTS as follows:

dBHV-RTS(TR1 , TR2 ) = dBHV(ψ(TR1 ), ψ(TR2 )),

where ψ maps a ranked tree shape to its corresponding ranked labeled genealogy by assigning a uniquely defined label to each
leaf and assigning a unit length to each change point time interval (ui, ui−1).

The unique assignment of the leaf labels `1, . . . , `n on a ranked tree shape consists in assigning labels in increasing index
order starting with leaves subtending from nodes closer to the bottom and ending with leaves subtending closer to the root
(Text 6).

The Kendall-Colijn (KC) metric. The KC metric is another metric on labeled genealogies (2). A labeled genealogy gLn with n leaves
is represented by an n(n+1)

2 -dimensional vector vλ(gLn) that is a convex combination of two vectors: (1− λ)m(gLn) + λM(gLn),
λ ∈ [0, 1]. m(gL) is a vector that concatenates n repetitions of one and a vector whose entry corresponds to the number of
edges between the most recent common ancestor of a pair of leaves and the root; M(gLn) is a vector that concatenates the
vector of leaf branch lengths and the branch length between the most recent common ancestor of a pair of tips and the root.

The KC distance dKC,λ with λ > 0 between two labeled genealogies is the Euclidean norm of the difference between the two
KC vector representations of the labeled genealogies. When λ = 0, the KC distance becomes a distance on the space of labeled
unranked topologies: dKC,0.

To adapt the KC distance to the space of ranked tree shapes, we propose two distances. We first define a KC-based distance
on ranked tree shapes, dKC-RTS, as follows

dKC-RTS(TR1 , TR2 ) = dKC,0(η(TR1 ), η(TR2 )),

where η maps a ranked tree shape to a labeled unranked tree shape by removing internal node rankings and uniquely labeling
leaves following the procedure described for dBHV-RTS.

The Colijn-Plazzotta (CP) metric. The CP metric is defined on tree shapes (3). The CP metric dCP is defined as the Euclidean
norm (L2-norm) of the difference between two vectors that uniquely describe the two tree shapes. Each node of a tree is labeled
by an integer recursively from tips to the root. The ith entry of the CP vector representing a tree shape records the frequency
of the tree nodes labeled with integer i. We define a modified CP distance dCP-RTS on ranked tree shapes as

dCP-RTS(TR1 , TR2 ) = dCP(φ(TR1 ), φ(TR2 )),

where φ returns the corresponding tree shape of a ranked tree shape by removing the labels of its internal nodes. We note that
dCP-RTS is not a metric but a pseudometric: all pairs of different ranked tree shapes with the same shape will have dCP-RTS = 0.
In addition, dCP-RTS does not account for heterochronous sampling, so we exclude dCP-RTS from our analyses on heterochronous
ranked tree shapes.
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B. Other distances on ranked genealogies. We now present the modified BHV and KC distances so that they can be compared
to our proposed distances on ranked genealogies.

dBHV-RG(gR1 ,gR2 ) = dBHV(η2(gR1 ), η2(gR2 )),

where η2 maps a ranked genealogy to a labeled ranked genealogy by uniquely labeling leaves as described for dBHV-RTS.
Similarly,

dKC-RG(gR1 ,gR2 ) = dKC,0.5(η2(gR1 ), η2(gR2 )).

We note that there is no adaptation of the CP metric to the space of ranked genealogies as the CP metric is defined on the
space of tree shapes, and thus, does not incorporate tree branch lengths.

6. Unique labeling scheme of ranked tree shapes

In order to adapt other distances defined on labeled trees to ranked tree shapes, we use the following labeling scheme. We
start by labeling the leaves that descend directly from the internal node with the largest rank n. If the node has two direct
descendent leaves with different edge lengths, we label the longer leaf `1 and the shorter leaf `2. If the two leaves have the
same edge lengths, we label them `1 and `2 from left to right. If the node has only one direct descendent leaf, we label it `1. If
there is no descending leaf, no labeling is done. We then move to the node with rank n− 1 and continue labeling the leaves by
traversing through the internal nodes in descending order of rank until all leaves are labeled. If the current node with rank k
has two direct descendent leaves and if the last assigned leaf label is `j , we label the leaf with the longer edge `j+1 and the leaf
with shorter edge `j+2; if the leaves have the same edge lengths, we label the pair of leaves `j+1 (left) and `j+2 (right). If the
node k has only one direct descendent leaf, we label it `j+1. If the node k has no direct descendent leaf, no label is assigned.
Examples demonstrating our unique labeling scheme are in Figure S3.
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Fig. S3. Unique labeling of ranked tree shapes and ranked genealogies. (A) Example of the unique labeling of a ranked genealogy with isochronous sampling. (B)
Example of the unique labeling of a ranked genealogy with heterochronous sampling.

7. Beta-splitting model on labeled tree shapes

We first consider the single-parameter beta-splitting model on labeled tree shapes (4). For a parent clade of size n, the model
chooses its child clade size to be i on the left branch and n− i on the right branch with probability

qn(i) = 1
an(β)

Γ(β + i+ 1)Γ(β + n− i+ 1)
Γ(i+ 1)Γ(n− i+ 1) ,

where an(β) is a normalizing constant and i ∈ {1, 2, . . . , n−1}. The splitting is repeated recursively in each branch independently
until the tree is fully resolved. The parameter β ∈ [−2,∞) controls the degree of balance of the generated trees. With β = −2,
the model generates the perfect unbalanced tree (caterpillar tree) with probability one, and with β =∞, the model generates
the perfect balanced tree with probability one. We note that Ford’s alpha-model (5) is another single parameter family of
models on the same class of trees as the beta-splitting model and it is not considered in this manuscript.

8. Alpha-Beta splitting model by Maliet et al. (6)

The alpha-beta model of Maliet et al. (6) generates labeled ranked tree shapes according to a size-biased distribution with a
stick-breaking construction. The algorithm first generates n independent draws u1, . . . , un from a Unif(0, 1) distribution. The
ui’s correspond to the n leaves of the tree. The first partition of the n leaves (at the root) is determined by drawing a random
number R1 ∼ Beta(β + 1, β + 1). All the n1 =

∑n

i=1 1(ui < R1) are placed on the left side of the tree and the rest on the
other side. Then, if n1 > 1, the left branch is chosen to bifurcate with probability proportional to nα1 . The algorithm continues
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generating beta-distributed values to bi-partition the leaves and chooses the order (ranking) proportional to their number
of descendants to the α power until the interval (0, 1) is partitioned into n intervals, each corresponding to an ui number.
The pseudocode is shown below. Leaf labels are then removed to generate a ranked tree shape. The β ∈ [−2,∞) parameter
determines the balance of the tree as in the beta-splitting model, and the α ∈ (−∞,∞) parameter regulates the relationship
between subtree family size (number of descendants) and closeness to the root. More specifically, when α < 0, subtrees with
small family sizes are closer to the root and when α > 0, subtrees with small family sizes are closer to the tips. When α = 1,
the alpha-beta model becomes the beta-splitting model on ranked tree shapes.

Algorithm 1 Simulation of a labeled ranked tree shape according to alpha-beta splitting model
1: Draw u1, . . . , un ∼ U(0, 1)
2: Set i = 1, r0 = 0
3: while i < n do
4: Draw Ri ∼ Beta(1 + β, 1 + β)
5: Let r1, . . . , ri be the ordered permutation of R1, . . . , Ri such that r1 < r2 < . . . < ri

6: Let yj =
{

1 if
∑n

k=1 1 (uk ∈ (rj−1, rj)) > 1
0 o.w

, for j = 1, . . . , i

7: if
∑i

j=1 yj > 1 then
8: Pick yk w.p. (rk−rk−1)αyk∑i

j=1
(rj−rj−1)αyj

. The partition defined by the uj ’s in (rk−1, rk) is chosen to bifurcate with ranking i.

9: i = i+ 1

9. Tajima coalescent on ranked genealogies

The Tajima coalescent is a model on ranked genealogies (Figure 1(A)). It is a Markov lumping of Kingman’s n-coalescent on
labeled and ranked genealogies (7, 8). The Tajima coalescent is a pure death process that starts with n unlabeled leaves at
time tn+1 = 0 and proceeds backward in time, merging pairs of branches to create interior nodes labeled by their order of
appearance. The merging of two branches is a coalescent event. In the Tajima coalescent, the distribution of coalescence times
is the same as in the Kingman coalescent and the probability of a topology, ranked tree shape, is given by

P (TR) = 2n−c−1

(n− 1)! , [S2]

where n is the number of leaves, and c is the number of cherries—the number of pairs of leaves that subtend from a shared
interior node. The Tajima coalescent on ranked tree shapes without times corresponds to the beta-splitting model on ranked
tree shapes with β = 0, also called the Yule model. A full description of the Tajima coalescent process can be found in Cappello
and Palacios (9).

10. Distributions on branching or coalescent times of heterochronous genealogies
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I0,2
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Fig. S4. Heterochronous genealogy. Example of a ranked genealogy with heterochronous sampling. s4, . . . , s1 and t8, . . . , t2 indicate sampling times (red dotted lines)
and coalescent times (blue dotted lines), respectively. u11, . . . , u1 are the ordered times of change points where the number of lineages changes due to either a sampling
event or a coalescent event. The time increases backwards in time starting with u11 = 0 as the present time. I0,k is the interval that ends with a coalescent event at tk . Ii,k
(i > 0) represents the interval that ends with a sampling time within the interval (tk+1, tk). For k = n, we adopt the convention tn+1 = 0.

The ranked tree shape and ranked genealogy of time-stamped samples are termed heterochronous ranked tree shapes and
heterochronous genealogies, respectively (Figure S4). Here, we assume that samples are collected at times sm, sm−1, . . . , s1,
with sm = tn+1 = 0 (the present), and sj < sj−1 for j = m, . . . , 2. At time sj , nj lineages are sampled, and

∑m

j=1 nj = n.

Jaehee Kim, Noah A. Rosenberg and Julia A. Palacios 7 of 30



The λ(t)-heterochronous-coalescent (10) describes the distribution of coalescent times conditioned on collecting nm, nm−1, . . . , n1
samples at times sm, sm−1, . . . , s1. As before, tn+1, tn, ..., t2 denote the coalescent times, except that the subindex no longer
indicates the number of lineages. Instead, the subindex indicates the rank order of the coalescent events going forward in time
(tipward) from the root at t2. Define (un+m−1, un+m−2, . . . , u1) as the vector of change points (coalescent or sampling times),
with 0 = un+m−1 < un+m−2 < · · · < u1 = t2. To state the density of coalescent times according to the λ(t)-heterochronous-
coalescent, going backwards in time (rootward), we denote the intervals that end with a coalescent event at tk by I0,k, and the
intervals that end with a sampling time within the interval (tk+1, tk) as Ii,k, where i is an index tracking the sampling events
in (tk+1, tk). More specifically,

I0,k = (max{tk+1, sj}, tk] for sj < tk

Ii,k = (max{tk+1, sj+i}, sj+i−1] for sj+i−1 > tk+1 and sj < tk,

with k = 2, ..., n and i ranges from 1 to the number of sampling events in (tk+1, tk). An example of the annotated time intervals
using I0,k and Ii,k is shown in Figure S4.

The conditional density of tk−1 is the product of the conditional density of tk−1 ∈ I0,k and the probability of not having a
coalescent event during the period of time spanned by intervals I1,k, ..., Im,k. That is, for k = 2, ..., n,

P [tk−1|tk, s,n, Ne(t)] = C0,k−1

Ne(tk−1)

× exp

[
−

{∫
I0,k−1

C0,k−1dt

Ne(t)
+

m∑
i=1

∫
Ii,k−1

Ci,k−1dt

Ne(t)

}]
, [S3]

where Ci,k =
(
ni,k

2

)
.

11. Embeddings in MDS

We chose MDS in two dimensions to visualize matrices of pairwise distances. In general, our metrics are well explained in the
MDS visualization; however, the other distances are usually poorly represented in this space. In this section, we propose a
measure of distortion and correlation to assess how well the embedding preserves the pairwise distances for each metric. In our
examples, the distortion measure shown in Table S15 suggests that our d2 metric has the best MDS embedding in general of
all distance functions considered with our d1 metric a close second. Similarly, the correlation measure shown in Table S16
confirms that our d1 and d2 metrics, with near perfect correlations, have far better embedding in the 2-dimensional MDS space
than the other distances considered.

A. Distortion. To assess our distances and their MDS embeddings in two dimensions, we compute the following distortion
statistic (11) defined as follows:

distortion = expansion× contraction,

where expansion and contraction are defined as follows. For a given sample of ranked tree shapes TS = {TR1 , TR2 , . . . , TRs } with
n leaves in T Rn ,

expansion = max
TRi ,T

R
j ∈TS ;
i 6=j

dMDS(TRi , TRj )
d(TRi , TRj )

,

where dMDS is the L2-Euclidean distance in the reduced MDS space and d is any distance function on ranked tree shapes, and

contraction = max
TRi ,T

R
j ∈TS ;
i 6=j

d(TRi , TRj )
dMDS(TRi , TRj )

.

The distortion on the ranked genealogies is defined similarly. The comparison of distortions for simulated ranked tree shapes
and ranked genealogies can be found in Table S15.

B. Correlation. As a second measure for assessing our distances and their MDS embeddings in two dimensions, we compute the
Pearson correlation coefficient between the two vectors of pairwise distances between sampled ranked tree shapes, one from
using any distance functions d on ranked tree shapes and the other from the L2-Euclidean distance dMDS in the reduced MDS
space:

correlation =
∑s

i=2

∑i

j=1

(
d(TRi , TRj )− µd

)(
dMDS(TRi , TRj )− µdMDS

)√∑s

i=2

∑i

j=1

(
d(TRi , TRj )− µd

)2∑s

i=2

∑i

j=1

(
dMDS(TRi , TRj )− µdMDS

)2 ,
where s is the number of sampled ranked tree shapes. µdMDS and µd are the mean of the pairwise distances using L2-Euclidean
distance in the MDS space and using any distance functions d on the sampled ranked tree shapes, respectively. The comparisons
of correlations for simulated ranked tree shapes and ranked genealogies appear in Table S16.
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Fig. S5. Bijection of ranked tree shapes and F-matrices for isochronous and heterochronous trees. (A) Example of a ranked genealogy with isochronous sampling.
(B) The corresponding F-matrix that encodes the ranked tree shape information of the tree in (A). (C) Example of a ranked genealogy with heterochronous sampling. (D) The
corresponding F-matrix of the heterochronous ranked tree shape in (C). Blue dotted lines indicate coalescent events and red dotted lines represent sampling events. In (C),
coalescent times are denoted by {tk}8k=2, sampling times by {sk}4k=1, and the number of lineages changes at change points {uk}11

k=1.

Jaehee Kim, Noah A. Rosenberg and Julia A. Palacios 9 of 30



u1 − u2 0 0 0 0 0 0 0 0 0

u1 − u3 u2 − u3 0 0 0 0 0 0 0 0

u1 − u4 u2 − u4 u3 − u4 0 0 0 0 0 0 0

u1 − u5 u2 − u5 u3 − u5 u4 − u5 0 0 0 0 0 0

u1 − u6 u2 − u6 u3 − u6 u4 − u6 u5 − u6 0 0 0 0 0

u1 − u7 u2 − u7 u3 − u7 u4 − u7 u5 − u7 u6 − u7 0 0 0 0

u1 − u8 u2 − u8 u3 − u8 u4 − u8 u5 − u8 u6 − u8 u7 − u8 0 0 0

u1 − u9 u2 − u9 u3 − u9 u4 − u9 u5 − u9 u6 − u9 u7 − u9 u8 − u9 0 0

u1 − u10 u2 − u10 u3 − u10 u4 − u10 u5 − u10 u6 − u10 u7 − u10 u8 − u10 u9 − u10 0

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10







Fig. S6. Example of the weight matrix W. The weight matrix associated with the example heterochronous ranked genealogy and its F-matrix in Figures S5(C) and (D). In
the last row, u11 is suppressed because we set the initial sampling time to be u11 = 0.
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Fig. S7. Comparisons of metrics applied to isochronous ranked tree shapes with n = 5.

Jaehee Kim, Noah A. Rosenberg and Julia A. Palacios 11 of 30



MDS Axis 1 (83.8 %)

M
D

S
 A

xi
s 

2 
(3

.6
 %

)

d1(A)

MDS Axis 1 (89.4 %)

M
D

S
 A

xi
s 

2 
(4

.3
 %

)

d2(B)

α = − 1, β = 0
α = − 1, β = − 1.5
α = + 1, β = 0
α = + 1, β = − 1.5

α = − 1, β = 0

(C)

α = − 1, β = − 1.5 α = + 1, β = 0 α = + 1, β = − 1.5

MDS Axis 1 (8.4 %)

M
D

S
 A

xi
s 

2 
(4

.0
 %

)

dBHV−RTS(D) dKC−RTS

MDS Axis 1 (54.1 %)

M
D

S
 A

xi
s 

2 
(9

.3
 %

)

(E)

MDS Axis 1 (34.8 %)

M
D

S
 A

xi
s 

2 
(1

0.
4 

%
)

dCP−RTS(F)

Fig. S8. MDS representation of distances between 4,000 simulated isochronous ranked tree shapes of n = 100 leaves, aggregated from four different alpha-beta
splitting models. 1,000 isochronous ranked tree shapes were simulated for each of pairs of (α, β) values in {(−1, 0), (−1,−1.5), (+1, 0), (+1,−1.5)}. Different α
generates different distributions of internal node ranking while different β generates different distributions of tree balance. (A) MDS of the d1 metric. (B) MDS of the d2
metric. (C) L2-medoid trees from each distribution using the d1 metric. MDS plots for (D) dBHV-RTS, (E) dKC-RTS, and (F) dCP-RTS. In each MDS plot, the triangle represents the
L2-medoid tree of 1,000 points for a specified model.
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Fig. S9. MDS representation of distances between 2,000 simulated heterochronous ranked tree shapes of n = 100 with different sampling events. (A) MDS of
the d1 metric. (B) MDS of the d2 metric. (C) L2-medoid trees from each distribution using the d1 metric. MDS plots for (D) dBHV-RTS and (E) dKC-RTS. To demonstrate that our
metrics are sensitive to sampling schedules, we simulated trees with n = 100 leaves under heterochronous sampling with two sampling scenarios. For the first set of trees (the
“Single” distribution), we selected 90 samples at time 0 and the remaining 10 samples at distinct times with sampling times drawn uniformly at random from (0, 104], i.e.,
n = (90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). In the second set of trees (the “Double” distribution), 80 samples were drawn at time 0 and the remaining 20 were sampled in pairs at ten
distinct random sampling times drawn uniformly from (0, 104], i.e., n = (80, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2). We generated 1,000 coalescent trees per sampling scheme assuming
a constant effective population size trajectory of N0 = 104. We then removed leaf labels to produce the 2, 000× 2, 000 distance matrices with all applicable distances.
Our metrics and dBHV-RTS show a clear separation between the two distributions along the first two MDS axes. The total distance explained in the two-dimensional space is
higher using our metrics, 66.5% and 76.4% for d1 and d2, respectively, compared to 13.5% of dBHV-RTS. dKC-RTS exhibits less discrimination than the other three distances.
The confusion matrices in Table S7 and the confusion statistics in Table S8 confirm that our metrics distinguish different sampling schemes better than the other two metrics
compared.
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Table S1. Summary of dispersions for ranked tree shapes. Comparison of dispersion (Eq. 6) of ranked tree shape distribution using distance
functions between ranked tree shapes. (A) Isochronous ranked tree shapes simulated from the beta-splitting model with varying β parameters
(Figure 4). (B) Isochronous ranked tree shapes simulated from the alpha-beta splitting model with varying α parameters and fixed β = 0
(Figure 5). (C) Heterochronous ranked tree shapes simulated from different sampling schemes (Figure S9). Note that dCP-RTS does not
account for heterochronous sampling, so we exclude dCP-RTS from our analyses on heterochronous ranked tree shapes (Text 5).

(A) Isochronous ranked tree shapes, beta-splitting model

d1 d2 dBHV-RTS dKC-RTS dCP-RTS

Balanced 5541.21 117.14 377.84 128.20 8.51
Yule 5889.31 119.40 363.33 182.52 8.97
AB 6579.90 127.37 345.82 271.78 9.58
PDA 6966.50 133.24 304.49 490.98 10.48
Unbalanced 4391.36 90.88 154.44 944.90 12.50

(B) Isochronous ranked tree shapes, alpha-beta splitting model

d1 d2 dBHV-RTS dKC-RTS dCP-RTS

α = −2 4701.27 90.81 85.33 110.76 8.95
α = −1 7202.89 135.70 110.64 126.06 9.00
α = 0 7719.71 150.57 262.18 172.73 8.96
α = 1 6084.73 122.77 363.17 182.49 9.06
α = 2 5668.18 115.80 376.98 179.18 9.08

(C) Heterochronous ranked tree shapes, different sampling schemes

d1 d2 dBHV-RTS dKC-RTS dCP-RTS

Single 10359.43 277.88 350.26 230.17 −
Double 10423.86 238.90 324.47 257.65 −
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Table S2. Comparison of metrics: discrimination of isochronous ranked tree shapes under different beta-splitting models. We compare
the performance of different distances on ranked tree shapes according to how well they separate trees simulated from the beta-splitting
distribution of ranked tree shapes with different balance parameters β. Rows indicate the sampling distribution and columns indicate the
L2-medoid of each distribution. Each matrix corresponds to a different distance metric. Entry (i, j) corresponds to the percentage of trees
simulated from the ith distribution that are closer to the jth L2-medoid than to the medoids of any other columns. The color scheme of the
L2-medoids follows Figure 4. The mean diagonal values are 83.28, 82.02, 20.32, 70.50, and 74.96 for matrices (A)-(E), respectively.
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Table S3. Summary of the pairwise mean confusion statistics and associated P values for isochronous ranked tree shapes under different
beta-splitting models. Each entry in the table contains a pair of values: the mean confusion statistic of two ranked tree shape sampling
distributions (Eq. 8) and its associated P value (Eq. 9). The simulated distributions of ranked tree shapes for the off-diagonal entries are the
same as those considered in Figure 4 and Table S2. The diagonal entries represent the tests of true null cases, where we generated additional
1,000 random ranked tree shapes per each β-value and computed the mean confusion statistic between two samples drawn from the same
distribution.

(A) d1

Balanced Yule AB PDA Unbalanced

Balanced 0.4935, 0.4628
Yule 0.1850, 0.0001 0.4990, 0.5088
AB 0.0360, 0.0001 0.1675, 0.0001 0.5025, 0.6396
PDA 0.0005, 0.0001 0.0110, 0.0001 0.0640, 0.0001 0.5105, 0.8766
Unbalanced 0.0000, 0.0001 0.0000, 0.0001 0.0000, 0.0001 0.0015, 0.0001 0.5245, 0.9919

(B) d2

Balanced Yule AB PDA Unbalanced

Balanced 0.5040, 0.7583
Yule 0.2025, 0.0001 0.5015, 0.6240
AB 0.0405, 0.0001 0.1755, 0.0001 0.4960, 0.3915
PDA 0.0015, 0.0001 0.0125, 0.0001 0.0695, 0.0001 0.5020, 0.6494
Unbalanced 0.0000, 0.0001 0.0000, 0.0001 0.0000, 0.0001 0.0015, 0.0001 0.4720, 0.0087

(C) dBHV-RTS

Balanced Yule AB PDA Unbalanced

Balanced 0.4900, 0.2052
Yule 0.4795, 0.0452 0.4760, 0.0194
AB 0.4570, 0.0001 0.4685, 0.0028 0.4955, 0.4076
PDA 0.4695, 0.0033 0.4700, 0.0041 0.4825, 0.0639 0.5150, 0.9245
Unbalanced 0.4950, 0.3609 0.4990, 0.4886 0.4990, 0.4864 0.4990, 0.5025 0.5085, 0.8043

(D) dKC-RTS

Balanced Yule AB PDA Unbalanced

Balanced 0.5015, 0.5973
Yule 0.2815, 0.0001 0.4940, 0.3448
AB 0.0945, 0.0001 0.2145, 0.0001 0.4880, 0.1071
PDA 0.0675, 0.0001 0.0900, 0.0001 0.1650, 0.0001 0.4760, 0.0126
Unbalanced 0.0400, 0.0001 0.0460, 0.0001 0.0535, 0.0001 0.0765, 0.0001 0.5115, 0.8692

(E) dCP-RTS

Balanced Yule AB PDA Unbalanced

Balanced 0.4935, 0.3205
Yule 0.2590, 0.0001 0.5150, 0.9263
AB 0.0755, 0.0001 0.2555, 0.0001 0.5015, 0.6544
PDA 0.0035, 0.0001 0.0260, 0.0001 0.1110, 0.0001 0.5035, 0.7410
Unbalanced 0.0000, 0.0001 0.0000, 0.0001 0.0000, 0.0001 0.0005, 0.0001 0.4750 0.0274

16 of 30 Jaehee Kim, Noah A. Rosenberg and Julia A. Palacios



Table S4. Comparison of metrics: discrimination of isochronous ranked tree shapes under different alpha-beta splitting models with a fixed
beta value. We compare the performance of different distances on ranked tree shapes according to how well they separate trees simulated
from the alpha-beta splitting distribution of ranked tree shapes with different parameter values α which regulates the internal node ranking
of a given tree shape. The format of the matrices follows Table S2. The simulation values and the color scheme of the L2-medoids follow
Figure 5. The mean diagonal values are 75.40, 76.94, 20.14, 36.48, and 19.56 for matrices (A)-(E), respectively.

95.6 4.4 0 0 0

30.4 69.0 0.6 0 0

0 0.6 86.0 12.8 0.6

0 0 4.9 61.4 33.7

0 0 0 35.0 65.0







α = −2

α = −1

α = 0

α = 1

α = 2

d1
(A)

92.5 7.5 0 0 0

22.9 76.6 0.5 0 0

0 0.4 88.0 11.2 0.4

0 0 4.3 62.3 33.4

0 0 0 34.7 65.3







d2
(B)

α = −2

α = −1

α = 0

α = 1

α = 2

L2-medoid

97.5 2.5 0 0 0

97.1 2.9 0 0 0

88.2 11.7 0.1 0 0

80.1 18.2 1.6 0.1 0

80.2 18.4 1.2 0.1 0.1







α = −2

α = −1

α = 0

α = 1

α = 2

dBHV-RTS
(C)

71.5 28.5 0 0 0

71.4 28.5 0 0 0.1

34.2 34.1 17.3 1.5 12.9

1.3 2.9 35.7 19.6 40.5

1.5 3.8 32.2 17.0 45.5







dKC-RTS
(D)

29.6 13.1 17.0 14.4 25.9

31.4 13.5 15.3 11.2 28.6

29.9 12.3 15.3 14.3 28.2

28.8 11.1 17.3 11.1 31.7

28.2 13.9 16.9 12.7 28.3







dCP-RTS
(E)
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Table S5. Summary of the pairwise mean confusion statistics and associated P values for isochronous ranked tree shapes under different
alpha-beta splitting models. The format of the table follows Table S3. The simulated distributions of ranked tree shapes for the off-diagonal
entries are the same as those considered in Figure 5 and Table S4. The diagonal entries represent the tests of true null cases, where we
generated additional 1,000 random ranked tree shapes per each α-value.

(A) d1

α = −2 α = −1 α = 0 α = 1 α = 2

α = −2 0.4845, 0.1206
α = −1 0.1740, 0.0001 0.5020, 0.6866
α = 0 0.0000, 0.0001 0.0060, 0.0001 0.5175, 0.9541
α = 1 0.0000, 0.0001 0.0005, 0.0001 0.0915, 0.0001 0.4970, 0.4946
α = 2 0.0000, 0.0001 0.0000, 0.0001 0.0505, 0.0001 0.3430, 0.0001 0.4900, 0.2482

(B) d2

α = −2 α = −1 α = 0 α = 1 α = 2

α = −2 0.4970, 0.5093
α = −1 0.1520, 0.0001 0.4990, 0.5878
α = 0 0.0000, 0.0001 0.0045, 0.0001 0.5120, 0.8818
α = 1 0.0000, 0.0001 0.0000, 0.0001 0.0795, 0.0001 0.5035, 0.7277
α = 2 0.0000, 0.0001 0.0000, 0.0001 0.0415, 0.0001 0.3400, 0.0001 0.4805, 0.0777

(C) dBHV-RTS

α = −2 α = −1 α = 0 α = 1 α = 2

α = −2 0.4930, 0.2680
α = −1 0.4980, 0.4308 0.5075, 0.7598
α = 0 0.4995, 0.5020 0.4990, 0.4879 0.5160, 0.9350
α = 1 0.4995, 0.4940 0.4995, 0.5025 0.4975, 0.4313 0.4890, 0.1853
α = 2 0.4995, 0.5217 0.4995, 0.5303 0.4950, 0.3698 0.4675, 0.0019 0.4965, 0.4360

(D) dKC-RTS

α = −2 α = −1 α = 0 α = 1 α = 2

α = −2 0.5060, 0.7526
α = −1 0.5000, 0.5893 0.5070, 0.7606
α = 0 0.3395, 0.0001 0.3350, 0.0001 0.4940, 0.3101
α = 1 0.1420, 0.0001 0.1210, 0.0001 0.4065, 0.0001 0.4895, 0.2360
α = 2 0.0610, 0.0001 0.0780, 0.0001 0.3425, 0.0001 0.4885, 0.0001 0.4860, 0.1200

(E) dCP-RTS

α = −2 α = −1 α = 0 α = 1 α = 2

α = −2 0.5090, 0.8159
α = −1 0.4920, 0.2788 0.5020, 0.6775
α = 0 0.4890, 0.1934 0.4970, 0.4219 0.5080, 0.7847
α = 1 0.4925, 0.2898 0.4865, 0.1333 0.5035, 0.6906 0.4870, 0.1825
α = 2 0.4895, 0.1984 0.4975, 0.4956 0.4990, 0.5067 0.5120, 0.9041 0.5105, 0.8784
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Table S6. Comparison of metrics: discrimination of isochronous ranked tree shapes under different alpha-beta splitting models. We compare
the performance of different distances on ranked tree shapes according to how well they separate trees simulated from the alpha-beta splitting
distribution of ranked tree shapes with different parameter valuesα and β. The format of the matrices follows Table S2. The simulation values
and the color scheme of the L2-medoids follow Figure S8. The respective mean separation indices (mean diagonal) are 89.8, 89.8, 25.4, 78.8,
and 49.5 for d1, d2, dBHV-RTS, dKC-RTS, and dCP-RTS.

75.6 23.3 0.0 1.1

13.2 86.8 0.0 0.0

0.0 0.0 99.8 0.2

0.4 0.0 2.7 96.9







α = −1, β = 0

α = −1, β = −1.5

α = +1, β = 0

α = +1, β = −1.5

d1
(A)

78.2 21.2 0.0 0.6

16.1 83.9 0.0 0.0

0.0 0.0 99.8 0.2

0.1 0.0 2.6 97.3







d2
(B)

α = −1, β = 0

α = −1, β = −1.5

α = +1, β = 0

α = +1, β = −1.5

L2-medoid

0.1 99.9 0.0 0.0

0.0 100.0 0.0 0.0

0.1 99.3 0.2 0.4

0.1 98.6 0.0 1.3







α = −1, β = 0

α = −1, β = −1.5

α = +1, β = 0

α = +1, β = −1.5

dBHV-RTS
(C)

99.9 0.0 0.1 0.0

20.6 76.9 0.0 2.5

25.4 0.0 74.6 0.0

1.7 14.0 20.4 63.9







dKC-RTS
(D)

56.7 0.3 42.9 0.1

1.9 57.5 0.5 40.1

54.2 0.8 44.9 0.1

2.2 58.4 0.6 38.8







dCP-RTS
(E)
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Table S7. Comparison of metrics: heterochronous ranked tree shapes with different sampling schemes. We compare the performance of
different distances on ranked tree shapes according to how well they separate trees simulated from the heterochronous Tajima coalescent
with different sampling sequences s and n. The format of the matrices follows Table S2. The simulation values and the color scheme of the
L2-medoids follow Figure S9. The mean diagonal values are 99.85, 99.90, 95.60, and 56.60 for matrices (A)-(D), respectively.

100.0 0

0.3 99.7





Single

Double

d1
(A)

99.9 0.1

0.1 99.9







d2
(B)

Single

Double

L2-medoid

92.1 7.9

0.9 99.1





Single

Double

dBHV-RTS
(C)

93.9 6.1

80.7 19.3







dKC-RTS
(D)
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Table S8. Summary of the pairwise mean confusion statistics and associated P values for heterochronous ranked tree shapes under different
sampling schemes. The format of the table follows Table S3. The simulated distributions of ranked tree shapes for the off-diagonal entries
are the same as those considered in Figure S9 and Table S7. The diagonal entries represent the tests of true null cases, where we generated
additional 1,000 random ranked tree shapes per each sampling scenario.

(A) d1

Single Double

Single 0.5175, 0.9782
Double 0.0015, 0.0001 0.5065, 0.7484

(B) d2

Single Double

Single 0.5215, 0.9832
Double 0.0010, 0.0001 0.5075, 0.8271

(C) dBHV-RTS

Single Double

Single 0.5135, 0.9413
Double 0.0440, 0.0001 0.4935, 0.2702

(D) dKC-RTS

Single Double

Single 0.4860, 0.1288
Double 0.4340, 0.0001 0.5000, 0.6279
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Table S9. Summary of dispersion comparisons for ranked genealogies. Comparison of dispersion of ranked genealogies using distance
functions between ranked genealogies. (A) Isochronous ranked genealogies simulated from different population trajectories under neutral
coalescent model (Figure 6). (B) Heterochronous ranked genealogies of real and simulated human influenza A/H3N2 virus data from different
geographical regions (Figure 8).

(A) Isochronous ranked genealogies, different demographic models

dw1 dw2 dBHV-RG dKC-RG

Constant 6420771.00 142726.04 33007.42 391150.52
Exponential 1331068.00 24847.09 1397.17 4743.48
Logistic 1744504.00 39291.83 8751.45 109258.59

(B) Heterochronous ranked genealogies, human influenza A/H3N2 virus

dw1 dw2 dBHV-RG dKC-RG

New York – New York 3368.28 53.41 3.90 88.91
New York – Southeast Asia 4581.15 65.93 9.21 263.54
Southeast Asia – Southeast Asia 6370.47 85.97 6.93 152.59
Southeast Asia – New York 5547.11 77.86 8.20 259.08
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Table S10. Comparison of metrics: isochronous ranked genealogies under different demographic models. We compare the performance
of different distances on ranked genealogies according to how well they separate trees simulated from the λ(t)-coalescent with different
population histories. The format of the matrices follows Table S2. The simulation values and the color scheme of the L2-medoids follow
Figure 6. The mean diagonal values are 99.80, 99.87, 33.40, and 73.97 for matrices (A)-(D), respectively.

99.6 0.4 0

0 99.9 0.1

0 0.1 99.9







Uniform

Exponential

Logistic

dw
1

(A)

99.7 0.3 0

0 99.9 0.1

0 0 100.0







dw
2

(B)

0.1 99.9 0

0 100.0 0

0 99.9 0.1







Uniform

Exponential

Logistic

Uniform

dBHV-RG
(C)

60.0 1.0 39.0

0 100.0 0

4.4 33.7 61.9







dKC-RG
(D)

Uniform

Exponential

Logistic

L2-medoid
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Table S11. Summary of the pairwise mean confusion statistics and associated P values for isochronous ranked genealogies under different
demographic models. The format of the table follows Table S3. The simulated distributions of ranked genealogies for the off-diagonal entries
are the same as those considered in Figure 6 and Table S10. The diagonal entries represent the tests of true null cases, where we generated
additional 1,000 random ranked genealogies per each demographic scenario.

(A) dw
1

Uniform Exponential Logistic

Uniform 0.4910, 0.2565
Exponential 0.0020, 0.0001 0.4870, 0.1493
Logistic 0.0005, 0.0001 0.0010, 0.0001 0.5015, 0.5805

(B) dw
2

Uniform Exponential Logistic

Uniform 0.5010, 0.6534
Exponential 0.0015, 0.0001 0.4840, 0.1144
Logistic 0.0005, 0.0001 0.0005, 0.0001 0.5125, 0.9081

(C) dBHV-RG

Uniform Exponential Logistic

Uniform 0.4990, 0.4722
Exponential 0.4995, 0.5093 0.5135, 0.8979
Logistic 0.4995, 0.4875 0.4995, 0.5139 0.5030, 0.8152

(D) dKC-RG

Uniform Exponential Logistic

Uniform 0.4890, 0.1819
Exponential 0.1335, 0.0001 0.5070, 0.8513
Logistic 0.2220, 0.0001 0.1685, 0.0001 0.5060, 0.7667
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Table S12. Comparison of metrics: human influenza A/H3N2 virus from different regions. We compare the performance of different distances
on ranked genealogies according to how well they separate trees from human influenza A virus from different regions. The format of the
matrices follows Table S2. The simulation values and the color scheme of the L2-medoids follow Figure 8. The mean diagonal values are
99.9, 99.9, 28.9, and 65.6 for matrices (A)-(D), respectively.

99.8 0.2 0.0 0.0

0.1 99.9 0.0 0.0

0.0 0.0 100.0 0.0

0.0 0.0 0.1 99.9







NY – NY

NY – SEA

SEA – SEA

SEA – NY

dw
1

(A)

99.8 0.2 0.0 0.0

0.1 99.9 0.0 0.0

0.0 0.0 100.0 0.0

0.0 0.0 0.1 99.9







dw
2

(B)

New York – New York

New York – Southeast Asia

Southeast Asia – Southeast Asia

Southeast Asia – New York

L2-medoid

100.0 0.0 0.0 0.0

98.7 0.1 1.2 0.0

84.6 0.2 15.2 0.0

98.7 0.0 1.1 0.2







NY – NY

NY – SEA

SEA – SEA

SEA – NY

dBHV-RG
(C)

99.7 0.3 0.0 0.0

46.8 38.2 11.6 3.4

0.0 0.8 99.1 0.1

55.6 13.0 6.1 25.3







dKC-RG
(D)
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Table S13. Summary of the pairwise mean confusion statistics and associated P values for heterochronous ranked genealogies sampled
from two posterior distributions of human influenza A/H3N2 virus (NY-NY and SEA-SEA) and two sets of simulated trees (NY-SEA and SEA-
NY). The format of the table follows Table S3. The simulated distributions of ranked genealogies for the off-diagonal entries are the same as
those considered in Figure 8 and Table S12. The diagonal entries represent the tests of true null cases, where we generated additional 1,000
random ranked genealogies per each scenario.

(A) dw
1

NY – NY NY – SEA SEA – SEA SEA – NY

NY – NY 0.4985, 0.7797
NY – SEA 0.0015, 0.0001 0.4965, 0.4107
SEA – SEA 0.0000, 0.0001 0.0000, 0.0001 0.4780, 0.0365
SEA – NY 0.0000, 0.0001 0.0000, 0.0001 0.0005, 0.0001 0.5030, 0.6356

(B) dw
2

NY – NY NY – SEA SEA – SEA SEA – NY

NY – NY 0.4925, 0.3424
NY – SEA 0.0015, 0.0001 0.5075, 0.8267
SEA – SEA 0.0000, 0.0001 0.0000, 0.0001 0.4915, 0.2798
SEA – NY 0.0000, 0.0001 0.0000, 0.0001 0.0005, 0.0001 0.4850, 0.1196

(C) dBHV-RG

NY – NY NY – SEA SEA – SEA SEA – NY

NY – NY 0.4890, 0.1764
NY – SEA 0.4995, 0.5242 0.4720, 0.0034
SEA – SEA 0.4240, 0.0001 0.3025, 0.0001 0.5000, 0.5256
SEA – NY 0.4990, 0.5154 0.1435, 0.0001 0.4225, 0.0001 0.5005, 0.5278

(D) dKC-RG

NY – NY NY – SEA SEA – SEA SEA – NY

NY – NY 0.4820, 0.0632
NY – SEA 0.2395, 0.0001 0.4955, 0.3624
SEA – SEA 0.0005, 0.0001 0.0625, 0.0001 0.4860, 0.1215
SEA – NY 0.2810, 0.0001 0.2540, 0.0001 0.0355, 0.0001 0.5160, 0.9560
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Table S14. The NCBI GenBank accession numbers for the HA sequences used in the analysis of human influenza A/H3N2 virus from different
geographical regions.

(A) New York

CY000001 CY000017 CY000025 CY000057 CY000177 CY000065 CY000089 CY000097 CY000113
CY000145 CY000209 CY000217 CY000233 CY000257 CY000265 CY000345 CY000353 CY000361
CY000033 CY000401 CY000409 CY000417 CY000433 CY000441 CY000489 CY000545 CY000585
CY000753 CY000761 CY000777 CY000873 CY000769 CY000933 CY000941 CY000965 CY001037
CY001088 CY000049 CY001072 CY001061 CY001045 CY000137 CY001237 CY001144 CY001301
CY001317 CY001333 CY001325 CY001293 CY001429 CY001469 CY001512 CY001552 CY001624
CY001640 CY000073 CY001736 CY002032 CY002072 CY002176 CY002224 CY002200 CY002248
CY002240 CY002264 CY000865 CY002424 CY002408 CY002416 CY002456 CY002472 CY002488
CY002480 CY002504 CY002608 CY002712 CY002720 CY002728 CY002736 CY002784 CY002776
CY003056 CY003096 CY003104 CY003120 CY003144 CY003160 CY003168 CY003192 CY003112
CY003040 CY003344 CY003424 CY003656 CY003777 CY006115 CY006147 CY006291 CY006371
CY006435 CY007643 CY008884 CY008868 CY009260 CY009244 CY013805 CY019165 CY019173
CY019189 CY019253 CY019285 CY019293 CY019811 EF473618 EF473619 EF473625 CY020533
EU501484 EU502299 EU502307 EU502310 EU502316

(B) Southeast Asia

DQ865945 DQ865949 DQ865951 DQ865955 DQ865957 DQ865958 DQ865959 DQ865961 DQ865962
DQ865970 AB281195 AB281200 AB281205 AB281210 AB281215 AB281232 AB281235 AB281238
AB281241 AB281244 AB281247 AB281250 EF566141 EF566142 EF566155 EF566164 EF566173
EF566176 EF566224 EF566227 EF566229 EF566332 EF566361 EF566362 EF566365 EF566051
EF566053 EF566067 EF566068 EF566074 EU501124 EU501125 EU501126 EU501127 EU501161
EU501168 EU501171 EU501172 EU501174 EU501176 EU501177 EU501221 EU501279 EU501281
EU501283 EU501308 EU501312 EU501317 EU501318 EU501319 EU501320 EU501321 EU501372
EU501373 EU501374 EU501375 EU501385 EU501441 EU501458 EU501459 EU501460 EU501461
EU501462 EU501463 EU501464 EU501465 EU501466 EU501467 EU501474 EU501531 EU501541
EU501542 EU501544 EU501545 EU501546 EU501547 EU501548 EU501558 EU501622 EU501773
EU501774 EU501787 EU501788 EU501789 EU501790 EU501791 EU501792 EU501793 EU501795
EU501800 EU502344 EU514639 EU514653 EU514654 EU514667 FJ229884 FJ561060 FJ865282
FJ865283 FJ865284 CY091149 CY091157 CY091165 CY091229 CY091245 CY091253 CY091261
CY091437 CY091445 CY091453 CY091469 CY091485
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Table S15. Summary of distortions. Comparison of distortion (Text 11A) using distance functions between ranked trees shapes and ranked
genealogies.

(A) Comparison of distortions on ranked tree shapes. The simulated data used for computation are the same considered for Table S1

.

d1 d2 dBHV-RTS dKC-RTS dCP-RTS

Isochronous
ranked tree shapes

(beta splitting)
5582.02 2369.98 8586.00 14331.64 27721.77

Isochronous
ranked tree shapes
(alpha-beta splitting)

3979.43 3028.30 10941.54 23989.64 5446.20

Heterochronous
ranked tree shapes

2343.93 2969.33 4553.04 12034.03 −

(B) Comparison of distortions on ranked genealogies. The simulated data used for computation are the same considered for Table S9.

dw1 dw2 dBHV-RG dKC-RG

Isochronous
ranked genealogies

6751.44 1836.89 18569.28 13716.09

Heterochronous
ranked genealogies

13938.84 7196.04 16197.56 3368.99
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Table S16. Summary of correlations. Comparison of correlation (Text 11B) between original distances and Euclidean distances in 2-
dimensional MDS comparisons.

(A) Comparison of correlations of original distances and Euclidean distances in two-dimensional MDS plots on ranked tree shapes. The
simulated data used for computation are the same considered for Table S1.

d1 d2 dBHV-RTS dKC-RTS dCP-RTS

Isochronous
ranked tree shapes

(beta splitting)
0.998 0.998 0.401 0.982 0.988

Isochronous
ranked tree shapes
(alpha-beta splitting)

0.998 0.999 0.648 0.518 0.909

Heterochronous
ranked tree shapes

0.984 0.986 0.634 0.734 −

(B) Comparison of correlations of original distances and Euclidean distances in two-dimensional MDS plots on ranked genealogies. The
simulated data used for computation are the same considered for Table S9.

dw1 dw2 dBHV-RG dKC-RG

Isochronous
ranked genealogies

0.981 0.954 0.527 0.946

Heterochronous
ranked genealogies

0.980 0.955 0.096 0.844
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