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ABSTRACT In forensic familial search methods, a query DNA profile is tested against a database to
determine if the query profile represents a close relative of a database entrant. One challenge for familial
search is that the calculations may require specification of allele frequencies for the unknown population from
which the query profile has originated. The choice of allele frequencies affects the rate at which non-relatives
are erroneously classified as relatives, and allele-frequency misspecification can substantially inflate false
positive rates compared to use of allele frequencies drawn from the same population as the query profile.
Here, we use ancestry inference on the query profile to circumvent the high false positive rates that result from
highly misspecified allele frequencies. In particular, we perform ancestry inference on the query profile and
make use of allele frequencies based on its inferred genetic ancestry. In a test for sibling matches on profiles
that represent unrelated individuals, we demonstrate that false positive rates for familial search with use of
ancestry inference to specify the allele frequencies are similar to those seen when allele frequencies align with
the population of origin of a profile. Because ancestry inference is possible to perform on query profiles, the
extreme allele-frequency misspecifications that produce the highest false positive rates can be avoided. We
discuss the implications of the results in the context of concerns about the forensic use of familial searching.
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In forensic genetics, when no exact match of a DNA profile to an
entrant in a database of profiles can be found, investigators can often
test for partial matches to determine if a sample of interest might be a
close relative of a database entrant (Bieber et al. 2006; Gershaw et al.
2011; Butler 2012). If a partial match is identified, then investigators
can consider relatives of the match as possible contributors of the
query profile.

Much of the discussion surrounding the suitability of this familial
search technique in forensic genetics has centered on the problem of
false positive relatedness matches (Greely et al. 2006; Murphy 2010;
Rohlfs et al. 2012, 2013; Garrison et al. 2013). In searches for exact
matches, a sample is typically tested at a number of forensic DNA
markers that is small, but large enough that a false positive database

match of a non-contributor to the query at all typed loci is relatively
unlikely. In familial identification, however, a true relative of the
contributor of the query profile has only a partial match at the typed
loci. Thus, the chance of a false positive—a non-relative achieving this
less-stringent partial match threshold—greatly exceeds the probabil-
ity that the same non-relative is a false exact match. Hence, owing to
nontrivial false positive rates, close relatives of database entrants can
be exposed to inappropriate forensic investigation when they have
not in fact contributed to query profiles.

Accurate understanding of the magnitude of false positive rates in
familial search is important for discussions regarding appropriate
application of the technique, which is used in various forms in a
number of jurisdictions (Debus-Sherrill and Field 2019; Katsanis
2020). To study properties of the false positive rate in familial
identification, Rohlfs et al. (2012) focused on the choice of allele
frequencies used as part of familial-search likelihood calculations.
Because a query profile represents a sample from an unknown
individual, its population membership, and hence, the appropriate
choice of allele frequencies for the calculation, is not known and can
potentially be misspecified. The allele frequencies used in the calcu-
lations ultimately affect the probability that a database entrant and
the query profile are identified as related, and their misspecification
can influence false positive rates.

Copyright © 2020 Fortier et al.
doi: https://doi.org/10.1534/g3.120.401473
Manuscript received March 2, 2020; accepted for publication June 20, 2020;
published Early Online June 25, 2020.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
Supplemental material available at figshare: https://doi.org/10.25387/g3.12469649.
1Corresponding author: Department of Biology, 371 Jane Stanford Way,
Stanford, CA 94305. E-mail: noahr@stanford.edu

Volume 10 | August 2020 | 2893

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/10/8/2893/6048655 by guest on 11 February 2022

http://orcid.org/0000-0001-5964-2540
http://orcid.org/0000-0002-5210-2004
http://orcid.org/0000-0002-1829-8664
https://doi.org/10.1534/g3.120.401473
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.25387/g3.12469649
mailto:noahr@stanford.edu


With a goal of examining the effect of misspecifying the allele
frequencies, Rohlfs et al. (2012) used allele-frequency data for a
variety of populations to measure rates at which false partial matches
between pairs of individuals were identified under a sibling relation-
ship hypothesis when the individuals were in fact unrelated. Rohlfs
et al. (2012) examined false positives under each of several possible
misspecifications, finding that false positives were more likely with
misspecified frequencies than when the frequencies were properly
specified to correspond to the population of origin of the individ-
uals—especially as the magnitude of the misspecification increased to
represent genetically distant populations.

We propose that the allele-frequency misspecifications that pro-
duce the highest false positive rates are possible to avoid by use of an
ancestry-inference step in the familial search procedure. Forensic
genetic profiles, even with the relatively limited marker sets they
typically employ, contain considerable information about genetic
ancestry (Phillips 2015; Algee-Hewitt et al. 2016). Thus, if the genetic
ancestry of a query profile can be partially inferred prior to a familial
search, then the allele frequencies used in the search could be selected
as those relevant to the estimated ancestry. Provided the estimated
ancestry information is reasonably accurate, extreme misspecifica-
tions and the high false positive rates that result from them might be
avoided.

Here, we devise a scheme that first infers the genetic ancestry of a
query profile and then applies the allele frequencies of the inferred
population of origin in familial search computations. Applying this
scheme to samples from diverse populations, the false positive rates
we observe with the ancestry-inference step are substantially lower
than those seen by Rohlfs et al. (2012) with misspecified allele
frequencies. In fact, they are close to the lower false positive rates
seen by Rohlfs et al. (2012) in scenarios with allele frequencies
associated with the source population for the query profile. Thus,
use of ancestry inference can help to control the false positive rates
of familial search procedures. We discuss the findings in relation
to ongoing arguments about the utility and application of familial
search.

MATERIALS AND METHODS

Data
We examined a sample of 978 individuals from the Human Genome
Diversity Panel (HGDP), genotyped at 791 microsatellite (STR) loci:
13 CODIS loci used in forensic genetics and 778 non-CODIS loci. The
data are taken from Algee-Hewitt et al. (2016), dropping duplicate
locus TPO-D2S as in Edge et al. (2017). We grouped the individuals
into four population groups: Sub-Saharan African (A), European,
Middle Eastern, and Central/South Asian (EMC), East Asian and
Oceanian (EAO), and Native American (NA). These four groups
approximate four clusters that are somewhat genetically distinguish-
able with the 13 CODIS loci (Algee-Hewitt et al. 2016). The numbers
of individuals genotyped were 94, 532, 269, and 83, for A, EMC, EAO,
and NA, respectively.

Ancestry estimation
We performed ancestry estimation using STRUCTURE (Pritchard
et al. 2000), employing unsupervised clustering with the admixture
and correlated allele frequencies models. All STRUCTURE runs used
K ¼ 4 and a burn-in period of 10; 000 steps followed by 10; 000
iterations from which posterior distributions were calculated. Our
choice of K ¼ 4 follows the earlier analysis of Algee-Hewitt et al.
(2016).

We performed STRUCTURE runs separately using the full set of
791 loci and only using the 13 CODIS loci, in each case employing
10 replicate analyses with the same settings. We averaged the
resulting estimated ancestry proportions and estimated cluster allele
frequencies using CLUMPP (Jakobsson and Rosenberg 2007) with
the greedy algorithm (M ¼ 2), greedily aligning runs in each of
10,000 sequences (GREEDY OPTION ¼ 2, REPEATS ¼ 10000),
and employing the G statistic (S ¼ 1) for measuring the similarity
between estimated ancestry proportions in pairs of replicates. We
used DISTRUCT to visualize the ancestry estimates (Rosenberg
2004).

Simulating relatives
Each STRUCTURE replicate run using all 791 loci provided estimates
of the allele frequencies at each locus for each of the four inferred
clusters. Taking the CLUMPP average across the 10 replicate runs, we
extracted the estimated allele frequencies, p̂i;ℓ;a, for each cluster i, locus
ℓ, and allelic type a. For each of the 978 individuals, to simulate
relatives of the individual, we weighted these estimated allele fre-
quencies by the individual’s estimated membership proportions q̂i,
averaged over the 10 replicate STRUCTURE runs with 791 loci, to
obtain an allele frequency distribution appropriate for the individual,
as in Equation 1:

p̂ℓ;a ¼ q̂1p̂1;ℓ;a þ q̂2p̂2;ℓ;a þ q̂3p̂3;ℓ;a þ q̂4p̂4;ℓ;a: (1)

For each of the 978 individuals, we simulated 10 siblings. To
generate each sibling, at each locus, we copied both of the original
individual’s alleles with probability 0.25, one of the individual’s
alleles chosen at random with probability 0.5, and none of the
individual’s alleles with probability 0.25. We then chose the
remaining allele(s) according to the weighted estimated allele
frequency distribution given by Equation 1. Thus, even when
alleles in the siblings are not identical by descent, the alleles of the
simulated sibling are drawn from an allele frequency distribution
that reflects the estimated ancestry of the original individual. We
treated loci as independent, conditional on the ancestry, and
we also treated alleles within loci as independent, conditional on
the ancestry.

Our approach of simulating identity by descent between siblings
according to the relatedness coefficients ðD0;D1;D2Þ ¼ 1

4;
1
2;

1
4

� �
fol-

lows Rohlfs et al. (2012) in assuming no background identity by
descent in the general population, or in other words, a coancestry
coefficient u ¼ 0. However, unlike in Rohlfs et al. (2012), because the
allele frequency distribution in our simulation was distinctive to each
individual, it is possible that the method of simulation induces a level
of coancestry u. 0 between siblings of different sampled individuals
comparable to that seen among individuals in the initial worldwide
data set.

Likelihood ratios
Definition We calculated likelihood ratios (LRs) for relationship
hypotheses for each pair consisting of an individual and a simulated
sibling. We performed this computation within each of the four prior
population groups, following the procedure of Rohlfs et al. (2012).
This step considered 94 · 940 pairs in A, 532· 5320 in EMC,
269 · 2690 in EAO, and 83 · 830 in NA. We calculated the likelihood
ratio

LR ¼ P½GjHr�
P½GjHu�; (2)
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whereG represents the multilocus genotype data for the pair,Hr is the
hypothesis that the two individuals in the pair are related, and Hu is
the hypothesis that they are unrelated. If we assume that all 13 CODIS
loci are independent, then we can express Equation 2 as:

LR ¼
Y13
ℓ¼1

P½GℓjHr �
P½GℓjHu�; (3)

where Gℓ represents the data at locus ℓ, ℓ ¼ 1; . . . ; 13. Evaluating
Equation 3 entails inserting the coefficients of relatedness, which
for siblings are ðD0;D1;D2Þ ¼ 1

4;
1
2;

1
4

� �
and for unrelated pairs are

ðD0;D1;D2Þ ¼ ð1; 0; 0Þ:

LR ¼
Y13
ℓ¼1

P½Gℓ
��D0 ¼ 1

4;D1 ¼ 1
2;D2 ¼ 1

4�
P½GℓjD0 ¼ 1;D1 ¼ 0;D2 ¼ 0�: (4)

Calculation Expressions for probabilities P½GℓjD0;D1;D2� depend
on the combinations of alleles observed for pairs of individuals, on the
allele frequencies assumed, and on the assumed value of the coan-
cestry coefficient, u. These expressions, originally derived by Fung
et al. (2003), appear in Rohlfs et al. (2012), supplementary text, page
1 (in the last case, PðA1A2;A3A4jD2;D1;D0Þ, the equation is missing
a coefficient of 4 that does not affect likelihood ratio computation).
Following Rohlfs et al. (2012), we considered two values for the
coancestry coefficient, u ¼ 0 and u ¼ 0:01. We include u ¼ 0:01 in
the main text and u ¼ 0 in the supplement.

In evaluating the likelihoods, we considered a variety of ways of
setting the allele frequencies (see Results).

Comparing likelihood ratio distributions To evaluate the differ-
ence between the likelihood-ratio distributions for true related and
true unrelated individuals, we calculated the distinguishability mea-
sure ~DVH (Visscher and Hill 2009; Rohlfs et al. 2012),

~DVH ¼
�
logðLRÞr  2
�
logðLRÞu

� �2

s2r þ s2u
: (5)

Here,
�
logðLRÞr and
�
logðLRÞu are sample means of the LR distribu-

tions for the true relatives and true unrelated pairs, respectively; s2r
and s2u are the sample variances of the distributions of LRs for the true
relatives and true unrelated pairs, respectively. A higher ~DVH indi-
cates that likelihood ratio distributions for true relatives and true
unrelated individuals are more easily distinguished. We used base e
for the logarithms in comparing ~DVH and in all other computations
requiring logarithms.

The numbers of true relatives and true unrelated pairs in our
simulation vary by assumed population group. Population A has 94· 10
related pairs and 94 · ð9402 10Þ unrelated pairs. Population EMC has
532 · 10 related pairs and 532 · ð53202 10Þ unrelated pairs. Population
EAO has 269 · 10 related pairs and 269 · ð26902 10Þ unrelated pairs.
Population NA has 83· 10 related pairs and 83 · ð8302 10Þ unrelated
pairs.

Gene diversity
To assess a measure of the extent to which alleles in a population
distinguish different individuals, we calculated the gene diversity, or
expected heterozygosity, of each of the four populations. For each
locus, the gene diversity is ~Hℓ (Nei 1987):

~Hℓ ¼ 2n
2n2 1

�
12

XNℓ

a¼1

~p2ℓ;a

�
; (6)

where Nℓ is the number of distinct alleles at locus ℓ. Here, ~pℓ;a is the
observed frequency of allele a at locus ℓ in the population and n is the
sample size in the population for the locus. For each population, we
averaged the observed gene diversity across 13 CODIS loci to obtain
�H. Note that no data were missing for the CODIS loci, so that a shared
sample size n was used for all loci within each population.

Coancestry coefficients
We evaluated the degree of difference between pairs of populations in
their allele frequency distributions. For this computation, we esti-
mated u for each pair of populations using the program GDA (Lewis
and Zaykin 2002). The calculation uses the estimator of Reynolds
et al. (1983), as in Weir (1996), Equation 5.3. We present û estimated
using only the 13 CODIS loci as well as using all 791 loci.

Data availability
See either Edge et al. (2017) or Supplementary Information for the
data used in this study. See Supplementary Information for scripts
and detailed documentation of the code used in this project. Sup-
plemental material available at figshare: https://doi.org/10.25387/
g3.12469649.

RESULTS

Allele frequencies from predefined populations
Following Rohlfs et al. (2012), we evaluated how misspecification of
the assumed major population affects our ability to distinguish
relatives from unrelated individuals. For each of our population
groups, A, EMC, EAO, and NA, we computed likelihood ratios
(LRs) for pairs of individuals and potential relatives using each of
the four major populations’ estimated allele frequencies. We term this
approach the Predefined-Population method of choosing the allele
frequencies. When the assumed population matches the pair’s true
population membership, we expect to more easily distinguish be-
tween true siblings and unrelated pairs compared to the cases in
which the populations do not match.

In each panel of Figure 1, we show the distributions of LR values
for true siblings and for true unrelated individuals, for a specific pair
of true and assumed population memberships. For example, in the
bottom leftmost panel, individuals are from the African population
(A), and Native American allele frequencies (NA) are used to evaluate
the likelihood ratios. The light green distribution is the density of log
likelihood ratio values for true unrelated pairs, whereas the dark green
distribution is for the true siblings. The black horizontal bars show the
central 95% of each distribution. The plot uses a coancestry assump-
tion of u ¼ 0:01. Plots along the diagonal of Figure 1 display the LR
distributions for true siblings and unrelated individuals when the
allele frequency assumption matches the true population. The off-
diagonal plots show LR distributions for misspecified pairings of
populations and allele frequency assumptions.

Distinguishability between true relatives and unrelated individuals
is higher when the matching allele frequencies are used rather than
nonmatching allele frequencies, as shown by the minimal overlap
between distributions in plots on the diagonal. In contrast, the off-
diagonal plots have more overlap between the true-sibling and true-
unrelated distributions. The specific distinguishability (~DVH) values
are listed in Table 1, and they are consistent with an analogous
analysis in Rohlfs et al. (2012), which also showed that distinguish-
ability is highest when the assumed population matches the true
population. Additionally, Rohlfs et al. (2012) found that distinguish-
ability was lowest when Navajo was the true population, likely due to
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the relatively low genetic diversity within this population ( �H ¼ 0:716
for the CODIS loci). Similarly, we also found the lowest distinguish-
ability between pairs belonging to the Native American population.
Rohlfs et al. (2012) found the highest distinguishability among
African American samples, and we found the highest distinguish-
ability among the Sub-Saharan African individuals, which have the
highest diversity among the populations we studied ( �H ¼ 0:796 for
the CODIS loci).

Allele frequencies from ancestry inference
In the Predefined-Population method in Figure 1, specifying the
correct-population allele frequencies clearly results in greater distin-
guishability than using misspecified allele frequencies. We hypoth-
esized that further refining the allele frequencies using ancestry
inference would also lead to higher distinguishability between related
and unrelated individuals than using misspecified allele frequencies.
Our Ancestry-Estimation method incorporates ancestry inference on
query samples to create weighted allele frequency distributions for
calculating LRs.

The most accurate ancestry estimates utilize all of the available
data. Hence, we first performed STRUCTURE analysis of the
978 sampled individuals using all 791 STR loci. These “full-data”
estimates are shown in Figure 2A. The clusters generally align with
the four assumed populations, although each individual shows some
amount of mixed cluster membership.

However, in testing a query sample in a forensic context, ancestry
would be estimated from fewer markers. Thus, we also performed
STRUCTURE analysis using the 13 CODIS loci, as shown in Figure
2B. When we use the 13 CODIS loci instead of all 791 loci, each
individual’s population membership is less clear, although each
individual’s largest membership component generally matches that
of the “full-data” STRUCTURE run. The analysis in Figure 2 repro-
duces that in Algee-Hewitt et al. (2016), except that one duplicated
locus in Algee-Hewitt et al. (2016) was not duplicated in our analysis.

Likelihood ratio distribution Next, for our Ancestry-Estimation
method, we calculated weighted allele frequency distributions ap-
propriate for each individual, weighting the inferred cluster allele
frequencies by each individual’s inferred membership proportions, as
in Equation 1. We then calculated likelihood ratios for each poten-
tially related pair, as in Equation 4.

We tested three distinct scenarios for evaluating Equation 4. The
first, “Full/Full,” uses the inferred allele frequencies and membership
proportions from the “full-data” STRUCTURE results using all
791 loci in Figure 2A. This scenario is equivalent to possessing
genotype data at all loci for both the query sample and a global
reference sample. The second, “Full/CODIS,” uses the inferred allele
frequencies from the “full-data” STRUCTURE results, but the mem-
bership proportions from the “CODIS” STRUCTURE run with only
the 13 CODIS loci in Figure 2B. This scenario amounts to having
genotype data available at many loci for a global set of reference

Figure 1 Log likelihood ratio (logcLR) distribu-
tions for siblings and unrelated individuals by
population group for allele frequencies chosen
by the Predefined-Population method. Each
plot shows the cLR distributions for unrelated
individuals in light green and true siblings in
dark green, with each cLR calculated from
Equation 4. The dashed vertical lines indicatecLR ¼ 1. The horizontal lines show the central
95% of each distribution. Each distribution
in the A column consists of 94· ð940210Þ
points and 94· 10 points for the unrelated
pairs and related pairs, respectively. Each
distribution in the EMC column consists of
532· ð5320210Þ and 532·10 pairs, respec-
tively. Each distribution in the EAO column
consists of 269· ð26902 10Þ and 269· 10
pairs, respectively. Each distribution in the
NA column consists of 83 · ð830210Þ and
83 ·10 pairs, respectively. A, African; EMC,
European, Middle Eastern, and Central/South
Asian; EAO, East Asian and Oceanian; NA,
Native American.

n■ Table 1 eDVH of major population groups, assuming allele frequencies from each major population group for the Predefined-Population
method. eDVH values are calculated using Equation 5 from the distributions plotted in Figure 1. A, African; EMC, European, Middle Eastern,
and Central/South Asian; EAO, East Asian and Oceanian; NA, Native American

True Population

Assumed Population A EMC EAO NA

A 6.52 5.50 5.27 3.66
EMC 5.78 6.13 5.87 3.75
EAO 5.61 5.69 6.17 4.22
NA 4.55 4.72 4.39 5.28
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populations, enabling accurate inference of CODIS allele frequencies
within inferred clusters. However, data are limited to the 13 CODIS
loci for a query sample, so that ancestry estimates rely only on
the CODIS loci. The third scenario, “CODIS/CODIS,” uses both
the inferred allele frequencies and ancestry proportions from the
“CODIS” STRUCTURE run. This scenario amounts to having data
only at the 13 CODIS loci for both a global reference sample and for
the query sample.

In each panel of Figure 3, we show the distribution of log likeli-
hood ratios for true siblings in dark green and true unrelated
individuals in light green, for a specific true population and a specific
one of the three scenarios. The black horizontal bars show the central
95% of each distribution. For example, the top leftmost plot shows the
density of LRs for true siblings and unrelated individuals in the
African population (A), assuming the Full/Full scenario. The top row
of Figure 3 shows the results for each population assuming the Full/
Full scenario, the middle row shows the Full/CODIS scenario, and the
bottom row shows the CODIS/CODIS scenario.

The Full/Full assumption of Figure 3 produces the highest dis-
tinguishability between true siblings and unrelated individuals, as
shown by the minimal overlap between the light green and dark green
distributions. The CODIS/CODIS assumption generates the lowest
distinguishability, as shown by the slightly higher overlap between the
light green and dark green distributions. In other words, possessing as
much data as possible (Full/Full) corresponds to a greater ability to
distinguish true siblings and unrelated individuals. In contrast, the

more limited data (CODIS/CODIS) is less successful in distinguish-
ing true siblings and unrelated individuals.

DistinguishabilityWe next compared distinguishability assuming
the Ancestry-Estimationmethod with distinguishability assuming the
Predefined-Population method. Distinguishability values were calcu-
lated according to Equation 5 from the empirical distributions shown
in Figures 1 and 3.

For the Predefined-Population method, for each of the true
populations, we sort the values in Table 1 to rank the four ways
of choosing the allele frequencies in decreasing order of distinguish-
ability. The first of these four approaches, “Best-Specified Popula-
tion,” uses an assumed population matching the individuals’ true
population. There are then three misspecification scenarios; the
identities of the assumed populations that correspond to each of
these misspecification scenarios differ according to which true pop-
ulation is considered. Empirically, EMC is the second-best-specified
population when the true population is A, but EAO is the second-
best-specified population when the true population is NA, as shown
in Table 1.

The results for each of the four Predefined-Population and three
Ancestry-Estimation scenarios, ranked by highest average ~DVH to
lowest average ~DVH across rows of the table, appear in Table 2. The
best-specified-population allele frequencies estimated from within a
major population perform comparably to the Full/Full scenario, as
they have similar ~DVH values across the row. The Full/CODIS
assumption is the next highest, followed by the CODIS/CODIS

Figure 2 STRUCTURE-based inference with K ¼ 4 clusters. (A) “Full-data” STRUCTURE results using all 791 loci. (B) “CODIS” STRUCTURE results
using only the 13 CODIS loci. Each color represents a different inferred cluster, and each cluster is generally associated with a prior population
(orange, A; blue, EMC; pink, EAO; purple, NA).

Figure 3 Log likelihood ratio (logcLR) distri-
butions for siblings and unrelated individuals
by population group for allele frequencies
chosen by the Ancestry-Estimation method.
The labels on the left side indicate the sce-
nario assumed, either Full/Full, Full/CODIS, or
CODIS/CODIS. The figure design otherwise
follows Figure 1.
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assumption, which has a clearly lower average ~DVH across the row
than Full/CODIS. The three misspecified population assumptions all
have much lower ~DVH values across the row. Hence, misspecifying
population allele frequencies generates a reduced ability to distin-
guish true relatives from unrelated individuals, in agreement with
results from Rohlfs et al. (2012). Ancestry estimation to improve allele
frequency estimates increases distinguishability over assuming an
incorrect major population when the query individual’s major pop-
ulation membership is unknown.

False positive rate and power Next, using the results in Figures 1
and 3, we assessed the false positive rate and power to distinguish
relatives from unrelated individuals for both the Ancestry-Estimation
and Predefined-Population methods.

The top-left panel of Figure 4 shows the true positive rate for
sibling detection as a function of the false positive rate, for pairs of
individuals in the African population (A). Each color in this receiver-
operating-characteristic (ROC) curve represents a different Prede-
fined-Population or Ancestry-Estimation scenario. In these plots,
curves that reach higher into the top-left corner of the plot have
higher true positive rates of sibling detection at lower false positive
rates. Each panel of Figure 4 shows results for a specified true
population.

The correct-population, Full/Full, Full/CODIS, and CODIS/
CODIS assumptions largely overlap in this plot, irrespective of the
true population. These assumptions have the highest area under the
curve and are best able to distinguish true relatives from unrelated
individuals. The misspecified-population scenarios, with lower dis-
tinguishability values, result in lower area under the curve.

Gene diversity
We expect to be able to distinguish relatives from unrelated indi-
viduals more easily when the corresponding allele frequency distri-
bution has high rather than low variability. With low genetic
diversity, individuals are more likely to have identical genotypes at
a locus even when they are not close relatives.

Figure 5 shows distinguishability, ~DVH , as a function of the average
gene diversity across loci. The ~DVH values are from Table 1, and the
gene diversity is calculated according to Equation 6. The first three
panels show the results for the three Ancestry-Estimation scenarios,
and the last panel shows the results for the Best-Specified-Population
scenario from the Predefined-Population method.

Figure 5 shows that ~DVH increases with gene diversity irrespective
of the method used to evaluate LRs. The Native American population
has the lowest gene diversity and ~DVH , whereas the African pop-
ulation has the highest values of both quantities.

Coancestry
We have shown that distinguishability is lower when the allele
frequency assumption used to calculate likelihood ratios is incorrect.
We quantify the degree of mismatch for misspecified and correctly
specified allele frequency distributions using the coancestry coeffi-
cient, u.

In Table 3, the upper triangle shows estimates of u between
populations using all 791 loci, and the lower triangle shows estimates
of u using the 13 CODIS loci. As a consequence of the high genetic
diversity of CODIS loci informative for distinguishing individuals, the
estimates using the 13 loci are smaller than the estimates using all
791 loci (Algee-Hewitt et al. 2016).

Figure 6B shows ~DVH , taken from Table 2, in relation to the
estimated u, taken from Table 3, under the scenarios from the
Predefined-Population method. Figure 6A shows ~DVH from Table
2 under the scenarios from the Ancestry-Estimation method, for
comparison with the Predefined-Population case with correctly-spec-
ified populations (u ¼ 0) in Figure 6B. The left half of each circle is
colored according to the prior population, and the right half is colored
according to the assumed population or ancestry estimation scenario.
Because û is calculated for each pair of populations, the two config-
urations of prior and assumed allele frequencies for a pair of
populations lie at the same horizontal position in the plot.

As shown in Figure 6B, ~DVH decreases with increasing û. For the
Predefined-Population method, the allele frequencies are increasingly
misspecified, decreasing our ability to distinguish true relatives from
unrelated individuals.

DISCUSSION
In this study, we have analyzed methods for choosing allele frequen-
cies for familial search in forensic genetics, comparing a new ap-
proach of using allele frequencies chosen from ancestry estimation in
the query sample to use of allele frequencies from a predefined
population. We have found that for the problem of distinguishing
siblings from unrelated individuals, Ancestry-Estimation methods
perform comparably to a Predefined-Population method that uses

n■ Table 2 eDVH for both methods, Predefined-Population and Ancestry-Estimation. Full/Full: Full-data allele frequencies and full-data
ancestry proportions from STRUCTURE runs with 791 loci. Full/CODIS: Full-data allele frequencies from STRUCTURE runs with 791 loci and
CODIS ancestry proportions from STRUCTURE runs with 13 CODIS loci. CODIS/CODIS: CODIS allele frequencies and CODIS ancestry
proportions from STRUCTURE runs with 13 loci. Best-Specified: Allele frequencies from the assumed population to which the individuals and
siblings belong. Second-Best-Specified: The second-highest distinguishability value from each column of Table 1, assuming the allele
frequencies from the second-best assumed population. Third-Best-Specified: The third-highest distinguishability value from each column of
Table 1, assuming the allele frequencies from the third-best assumed population. Fourth-Best-Specified: The lowest distinguishability value
from each column of Table 1, assuming the allele frequencies from the fourth-best assumed population. eDVH values are calculated using
Equation 5 and the distributions plotted in Figures 1 and 3

True Population

Assumption A EMC EAO NA

Best-Specified Population 6.52 6.13 6.17 5.28
Full/Full 6.54 6.12 6.18 5.26
Full/CODIS 6.44 5.95 5.90 5.16
CODIS/CODIS 6.31 5.99 5.81 5.02
Second-Best-Specified Population 5.78 5.69 5.87 4.22
Third-Best-Specified Population 5.61 5.50 5.27 3.75
Fourth-Best-Specified Population 4.55 4.72 4.39 3.66
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allele frequencies associated with the population of origin of the query
sample (Table 2). The Ancestry-Estimation methods, however, avoid
the high false positive rates that result from misspecifying the
population of origin of the allele frequencies in the Predefined-
Population method. In a forensic context, because genetic markers
in query forensic profiles are always available in principle for ancestry
estimation, the higher false positive rates resulting from the most
extreme allele-frequency misspecifications can be avoided.

The study expands upon the work of Rohlfs et al. (2012),
which characterized false positive rates in familial search using both
allele frequencies matched by population to the query sample and

misspecified allele frequencies. In a similar analysis using a different
data set, we have replicated their results that false positive rates are
substantially greater when the allele frequencies are misspecified
(Figure 4), and that the increase in false positive rates increases with
the degree of misspecification (Figure 6). Like Rohlfs et al. (2012), we
found that distinguishability of relatives and unrelated individuals
increases with gene diversity within populations, irrespective of the
allele frequency scenario (Figure 5): as gene diversity increases across
the four population groups, from Native Americans to Sub-Saharan
Africans, the probability that a pair of non-siblings has a partial
match decreases, increasing distinguishability.

Figure 4 Receiver-operating-
characteristic (ROC) curves show-
ing true positive rate as a function
of false positive rate in assigning
individuals as siblings. The plots
are calculated from the distribu-
tions in Figures 1 and 3. Each curve
for A uses 94·940 pairs, each curve
for EMC uses 532· 5320 pairs, each
curve for EAOuses 269 ·2690 pairs,
and each curve for NA uses 83 · 830
pairs. The inset panels show the de-
tail at the upper left corner of each
plot.

Figure 5 The empirical distinguishability (~DVH) for siblings and unrelated individuals as a function of average gene diversity across the 13 CODIS
loci, �H. Points are colored according to the true population group. Each panel considers a different pair of assumptions about allele frequencies and
ancestry in computing the likelihood ratios, as shown in Figures 1 and 3. ~DVH is computed from Equation 5 and �H is computed from Equation 6.

Volume 10 August 2020 | Ancestry and Forensic Familial Searching | 2899

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/10/8/2893/6048655 by guest on 11 February 2022



Extending beyond the approach of Rohlfs et al. (2012) of
considering allele frequencies from the population that matches
the query sample and from each of several possible allele frequency
misspecifications, we added three Ancestry-Estimation scenarios.
All three scenarios produce greater distinguishability between sib-
lings and unrelated individuals than use of misspecified allele
frequencies, with values generally closer to those obtained for allele
frequencies that match the query sample (Table 2). One of the
Ancestry-Estimation scenarios, the CODIS/CODIS scenario, relies
on allele frequencies and ancestry estimates obtained from the
analysis of samples for which forensic markers have been gathered;
this scenario is practical in principle in any case in which familial
search is of interest and reference data are available on forensic
genetic markers.

The Full/Full Ancestry-Estimation scenario, considering allele fre-
quencies and ancestry estimates based on use of many more markers
beyond the 13 forensic markers, produces distinguishability values that
exceed those of the CODIS/CODIS scenario, and that are comparable
to use of allele frequencies that match the query profile (Table 2).
Interestingly, however, the Full/CODIS scenario, in which allele fre-
quencies are estimated from STRUCTURE runs with a large number of
markers but ancestry estimates are obtained from STRUCTURE runs
only with the CODIS loci, has distinguishability more similar to the
CODIS/CODIS case rather than to the Full/Full case, despite its use of
STRUCTURE estimates of allele frequencies from a larger data set. It is
possible that distinguishability does not increase because the allele
frequency estimates and ancestry estimates rely on STRUCTURE runs
that use different data, so that the estimated parameters inserted into
Equation 1 are not all taken from the same model.

We note several limitations. Because the analysis obtains allele
frequencies based on individual multilocus genotypes rather than
treating alleles as independent across loci, residual coancestry among
the sampled individuals could affect our characterization of the
parameter u. Thus, although we simulated siblings using u ¼ 0, it
is possible that the actual coancestry of pairs of unrelated individuals
tested for relatedness exceeds 0. When we use u ¼ 0:01 to compute
likelihood ratios, we obtain greater distinguishability between siblings
and unrelated pairs than when we use u ¼ 0 (Supplementary In-
formation, Figures S1-S5 and Tables S1 and S2). However, changing
the choice of u does not affect the relative position of the different
allele frequency assumptions, so that our broad conclusions about the
improvement of Ancestry-Estimation compared to allele frequency
misspecification are unaffected.

We have only considered sibling relationships. In general, false
positive rates are expected to be lower for parent-offspring relation-
ships than with sibling relationships. Unlike for siblings, a parent and
offspring share at least one identical allele at every locus; for an
unrelated pair to achieve this level of sharing is more unlikely than to
produce identity by chance at some of the loci, as in the case of tests
for siblings or other relationships. Because our simulation approach,
which did not take into account genotyping error, would find that
nearly all unrelated pairs would be excluded as parent-offspring pairs,
we focused on sibling relationships. Although accurate determination
of pairwise relationships for more distant relatives is challenging with
only tens to hundreds of markers (Boehnke and Cox 1997; Epstein
et al. 2000), we note that the mathematics of our approach is
applicable in general for more distant relationships, and it may be
possible to examine relationships such as half-siblings and first
cousins.

A possible concern is that uneven sample sizes across ancestry
groups could have affected population structure inference, in turn
influencing distinguishability scores. We therefore repeated our
pipeline using 10 down-sampled data sets, each containing 83 indi-
viduals chosen at random from each of the four prior population
groups. This choice reflects the size of the ancestry group of smallest
size (the Native American group). The down-sampled analysis
produces distinguishability values comparable to those seen in Table
2, with similar rankings for Ancestry-Estimation and Predefined-
Population methods (Supplementary Information, Tables S3 and

n■ Table 3 û between population groups. u is a measure of
population difference (see Coancestry coefficients). The upper
triangle was estimated using 791 loci, and the lower triangle was
estimated using the 13 CODIS loci

A EMC EAO NA

A — 0.040 0.056 0.100
EMC 0.024 — 0.027 0.067
EAO 0.036 0.013 — 0.057
NA 0.081 0.058 0.053 —

Figure 6 The empirical distinguishabil-
ity (~DVH) for siblings and unrelated indi-
viduals. (A) Distinguishability for the Full/
Full, Full/CODIS, andCODIS/CODISAn-
cestry-Estimation scenarios. (B) Distin-
guishability for the Predefined-Population
scenarios as a function of the esti-
mated coancestry coefficient, û, for
pairs of populations, one reporting
the true population and the other
reporting the source population for
the allele frequencies. The u estimate
of genetic distance between two pop-
ulations is from the 13 CODIS loci only,
as in the lower triangle of Table 3.
û ¼ 0 indicates that the true popula-

tion and source population are the same. The left color of each circle corresponds to the true population group, and the right color of each circle
corresponds to the assumption used in the LR calculations. The Full/Full, Full/CODIS, and CODIS/CODIS cases are plotted separately in A for
comparison with the Predefined-Population case with “correctly-specified” populations (single-color circles in B at û ¼ 0). ~DVH values are taken from
Table 2. The equation of the regression line in B is ~DVH ¼ 6:102227:361  û.
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S4). Thus, we find that unevenness in sample size is unlikely to have
strongly influenced the general conclusion on the potential value of
the Ancestry-Estimationmethods to improve upon misspecified allele
frequencies.

An additional comment is that in the United States, for new
samples starting in 2017, forensic profiles are generally obtained with
20 rather than 13 CODIS loci (Hares 2015). The additional loci have
been seen to contribute to reducing false positives in familial
searching (Karantzali et al. 2019). With 20 loci, our approach
would proceed in the same way as with the 13 loci. With an increase
from 13 to 20 loci, we expect that distinguishability will increase in
all scenarios, including both Predefined-Population and Ancestry-
Estimation methods. In particular, ancestry inference based on
20 loci will potentially improve, increasing distinguishability for
the CODIS/CODIS scenario.

Although in principle, human population structure can give rise to
large numbers of STRUCTURE clusters, we selected K ¼ 4 clusters
for choosing allele frequencies, based on the analysis of Algee-Hewitt
et al. (2016), in which the CODIS loci enabled four clusters to be
identified using STRUCTURE. The choice of the level of granularity
for selecting allele frequencies in forensic problems requires careful
consideration; we found here that for query samples, it is potentially
valuable to consider allele frequencies as linear combinations of
multiple potential source populations. Such an approach may be
particularly valuable for recently admixed populations; as the pop-
ulations in the study, from the Human Genome Diversity Panel, have
not been selected for recent admixture, this hypothesis merits further
investigation with alternative data sets.

One effect of the granularity of the population structure
assumption is its influence on the induced level of linkage dis-
equilibrium between unlinked loci in structured populations. We
have assumed linkage equilibrium between pairs of loci within
ancestry groups; however, with K ¼ 4, each ancestry group po-
tentially possesses linkage disequilibrium as a consequence of
substructure within the group. Linkage disequilibrium between
unlinked microsatellites is detectable within large continental
populations, though primarily at low levels (Rosenberg and Cal-
abrese 2004). Ancestry inference at a finer scale, as can be con-
ducted with the full data but is challenging with the CODIS
markers alone, can potentially reduce linkage disequilibrium
within ancestry groups.

The use of familial search methods in forensic genetics has
generated much discussion. Expanding the search space from
database entrants to their close relatives has the potential to identify
the contributor of a query profile when no exact match to the profile
is found (Bieber et al. 2006; Curran and Buckleton 2008). However,
use of familial search raises concerns about privacy, law, and policy
related to such searches (Greely et al. 2006; Murphy 2010); for
example, the set of relatives accessible to such investigations might
disproportionately represent disadvantaged populations to an un-
acceptable degree. A central parameter in such discussions is the
false positive rate of familial search procedures, as the false positive
rate affects the rate at which false positive relatives of database
entrants are subjected to intrusive investigations. Although our
study suggests that an ancestry-inference procedure can potentially
bound the false positive rate at values below those produced by the
most serious misspecifications of allele frequencies, such reductions
may continue to produce rates that are found to be intolerably high.
In practical settings, it continues to be important to examine false
positive rates for familial search procedures in relation to associated
risks.
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